The wire needs to be sauderwired to be connected back into place to get energy into column so it came function properly again!
a. The direction of the stone's velocity changes as it moves around the circle.
b. The magnitude of the stone's velocity does not change.
d. The change in direction of the stone's motion is due to the centripetal force acting on the stone.
Above given are true for the given situation.
<u>Answer:</u> Option A, B and D
<u>Explanation:</u>
Circular motion may be characterized as the moving of an objects along the diameter of the circle or any circular direction. It may be standardized and non-uniform based on whether or not the rate of rotation is unchanged.
The velocity, a vector quantity is constant in a uniform circle motion speed is constant as its direction continues to change. Centripetal force works inward toward the core to counterbalance the centrifugal force from the center moving outward.
Its larger and if u where wondering to positive ions are smaller
Answer: 363 Ω.
Explanation:
In a series AC circuit excited by a sinusoidal voltage source, the magnitude of the impedance is found to be as follows:
Z = √((R^2 )+〖(XL-XC)〗^2) (1)
In order to find the values for the inductive and capacitive reactances, as they depend on the frequency, we need first to find the voltage source frequency.
We are told that it has been set to 5.6 times the resonance frequency.
At resonance, the inductive and capacitive reactances are equal each other in magnitude, so from this relationship, we can find out the resonance frequency fo as follows:
fo = 1/2π√LC = 286 Hz
So, we find f to be as follows:
f = 1,600 Hz
Replacing in the value of XL and Xc in (1), we can find the magnitude of the impedance Z at this frequency, as follows:
Z = 363 Ω