The specific answer for that will be 71.38 kg
Answer:
300 cos 30 = 40 a + 40 * .2 * 10
Total force = mass * acceleration + frictional force
260 = 40 a + 80
a = 180 / 40 = 4.5 m/s^2
Check:
15 a + 15 * 10 * .2 = T acceleration of 15 kg block (assuming a = 4.5)
T = 15 (4.5) + 30 = 97.5 force required to accelerate 15 kg block
260 - 97.5 = 162.5 net force on 25 kg block
162.5 = 4.5 (25) + 25 * 10 * .2
162.5 = 112.5 + 50 = 162.5
4.5 m/s^2 checks out as correct
Answer:
0.78333 m/s in the opposite direction
1.566 m/s in the same direction
Explanation:
= Mass of penny = 0.0025 kg
= Mass of nickel = 0.005 kg
= Initial Velocity of penny = 2.35 m/s
= Initial Velocity of nickel = 0 m/s
= Final Velocity of penny
= Final Velocity of nickel
As momentum and Energy is conserved


From the two equations we get

The final velocity of the penny is 0.78333 m/s in the opposite direction

The final velocity of the nickel is 1.566 m/s in the same direction
Answer:
1902.75 kg
Explanation:
From Law of conservation of momentum,
m₁u₁ + m₂u₂ = V (m₁ + m₂).................... Equation 1
make m₂ the subject of the equation,
m₂ = (m₁V - m₁u₁)/(u₂-V)..................... Equation 2
Where m₁ = mass of the truck, m₂ = mass of the car, u₁ initial velocity of the truck, u₂ = initial velocity of the car V = common velocity
Given: m₁ = 2537 kg, u₁ = 14, V= 8 m/s, u₂ = 0 m/s ( as the car was at rest waiting at a traffic light)
Substituting into equation 2.
m₂ =[2537(8) - 2537(14)]/(0-8)
m₂ = (20296-35518)/-8
m₂ = -15222/-8
m₂ = 1902.75 kg.
Thus the mass of the car = 1902.75 kg
Answer:
Any object moving in a circle (or along a circular path) experiences a centripetal force. That is, there is some physical force pushing or pulling the object towards the center of the circle. This is the centripetal force requirement.
Explanation: