You have to find the calculate<span> the circumference first then you can just multiply the diameter by π, which is about 3.142. That gives you the distance for each </span>revolution<span>. Then you can multiply by the </span>number of revolutions<span> per minute.
</span>
The correct answer is:
<span>The rate at which a waves energy flows through a given unit of area
In fact, light intensity is defined as the light power per unit of area:
</span>

<span>but the power is the energy carried by the light per unit of time:
</span>

<span>this means that the intensity can be rewritten as
</span>

<span>
So, it's basically the rate of energy (per unit of time) through a given surface.</span>
Answer: Gravity is the force that keeps planets in orbit around the Sun. Gravity alone holds us to Earth's surface.
Planets have measurable properties, such as size, mass, density, and composition. A planet's size and mass determines its gravitational pull.
A planet's mass and size determines how strong its gravitational pull is.
Models can help us experiment with the motions of objects in space, which are determined by the gravitational pull between them.
Explanation:
Answer:
resultant force = (f1²+f2²)½
=(1.5²+2²)½
=(2.25+4)½
=(6.25)½
=2.5
Explanation:
okay this question seems easy. now if the 1.5 is vertically upwards so is that 2 is horizontally downwards hence as u say its 90 degrees thn it forms a right angled triangle.
Answer:
the sides of the wedge are inclined.
Explanation:
The wedge is a triangular simple machine with a blunt face and two inclined faces. The distribution of forces in a wedge is because the sides of the wedge are inclined.