The ball will take 2.551 seconds to reach its peak position.
<h3>How much time will the ball take to land?</h3>
We must know how long the balls are in the air before we can predict where they will fall. It will take 2 seconds for both balls to touch the ground.
<h3>How quickly does a ball drop?</h3>
The falling ball travels a distance of d = 12 9.8 (m/s2) t2, with a speed of v = 9.8 (m/s2) t as a function of time. The ball travels 4.9 m in a second. The falling ball's velocity is v = -9.8 (m/s2) t j, and its position is r = (4.9 m - 12 9.8 (m/s2) t2) j as a function of time.
To know more about balls visit:-
brainly.com/question/19930452
#SPJ4
Answer:
<em>They represent kinetic energy</em>
Explanation:
<u>Kinetic Energy
</u>
A body can do work due to some of its attributes or states. For example, its mass can do work if used to provide energy, if the object is at a certain height respect to some reference level, it can do work when going downwards (potential energy), if the object moves at a certain speed, it can do work when transferring part of its speed to other objects. It's called kinetic energy and is given by

Both runners are moving in a horizontal path, thus they have kinetic energy, given by the above equation. If they could jump below ground level, then they will also have potential energy
Hey there!
So we know that m*v=P.
And in this question m=30
v=5 m/s
P = 30*5 Kgm/s
P = 150 Kgm/s
So, your final answer is 150 Kg.m/s
Hope this helps! :)
The displacement is zero. The most important concept to understand is the difference between displacement and total distance traveled. Total distance traveled would be tracking the length of the entire path the ant walked for the whole time (4.26m x 2). Displacement is how far from a designated origin (here, the food source) the ant ended up at the end of the time. Mathematically, the ant walked 4.26m from food source to nest (+4.26m) and then walked from the nest to food source (-4.26m), so the net displacement is [+4.26] + [-4.26] = 0m.
Answer:
the average speed of the car is 170 mph.
Explanation:
Given;
initial speed, u = 70 mph
time of motion, t₁ = 3 hours
final speed, v = 20 mph
time of motion, t₂ = 2 hours
The average speed of the car is calculated as;

Therefore, the average speed of the car is 170 mph.