Absorption happens when <span>all of the energy from light waves is transferred to a medium.</span>
Answer:
The acceleration is about 9.8 m/s2 (down) when the ball is falling.
Explanation:
The ball at maximum height has velocity zero
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 9.8 m/s² (positive downward and negative upward)

The accleration 9.8 m/s² will always be acting on the body in opposite direction when the body is going up and in the same direction when the body is going down. The acceleration on the body will never be zero
Rinse Bacon in Water Before Cooking to Reduce Shrinkage by 50 Percent. This sounds like a bizarre thing to do, but we're talking about less bacon shrinkage! Rinse your… At the end of the day, the best way to keep your bacon from shrinking when cooking is to cook it low and slow in the oven.
Answer:
547 m
Explanation:
From law of motion
s = ut + ½at²
Where "t" is Time taken to reach Earth
s= distance= 182 m
a= vertical acceleration = 5.82 m / s 2
U= initial velocity in vertical position = 0
182= ½ × 5.82t²
t²=( 2× 182)/ 5.82
= 364/5.82
= 62.54
t= √62.54
t= 7.908s
horizontal distance travelled = speed x time
Horizontal speed= 72.6 m / s
horizontal distance travelled =72.6× 7.908
= 547 m
Hence, the survivor will it hit the waves at 547 m away
Answer:
F = - 3.56*10⁵ N
Explanation:
To attempt this question, we use the formula for the relationship between momentum and the amount of movement.
I = F t = Δp
Next, we try to find the time that the average speed in the contact is constant (v = 600m / s), so we say
v = d / t
t = d / v
Given that
m = 26 g = 26 10⁻³ kg
d = 50 mm = 50 10⁻³ m
t = d/v
t = 50 10⁻³ / 600
t = 8.33 10⁻⁵ s
F t = m v - m v₀
This is so, because the bullet bounces the speed sign after the crash is negative
F = m (v-vo) / t
F = 26*10⁻³ (-500 - 640) / 8.33*10⁻⁵
F = - 3.56*10⁵ N
The negative sign is as a result of the force exerted against the bullet