Answer:
5.5g of ice melts when a 50g chunk of iron at 80°C is dropped into a cavity
Explanation:
The concept to solve this problem is given by Energy Transferred, the equation is given by,

Where,
Q= Energy transferred
m = mass of water
c = specific heat capacity
Temperature change (K or °C)
Replacing the values where mass is 50g and temperature is 80°C to 0°C we have,



Then we can calculate the heat absorbed by m grams of ice at 0°C, then

How Q_1=Q_2, so



Then 5.5g of ice melts when a 50g chunk of iron at 80°C is dropped into a cavity
The velocities and the speed build a triangle, where the 1.7 m/s are the hypotenuse and the x-velocity and y-velocity are the other sides.
<span>So the x-velocity is: speed*cos(angle) </span>
<span>now plug in </span>
<span>x=1.7 m/s * cos(18.5)=1.597 m/s </span>
Answer:
The specific heat capacity is the heat or energy required to change one unit mass of a substance of a constant volume by 1 °C. The formula is Cv = Q / (ΔT ⨉ m)
To get the best possible answer. (sorry if im wrong)
Answer:
Explanation:
Given that,
Assume number of turn is
N= 1
Radius of coil is.
r = 5cm = 0.05m
Then, Area of the surface is given as
A = πr² = π × 0.05²
A = 7.85 × 10^-3 m²
Resistance of
R = 0.20 Ω
The magnetic field is a function of time
B = 0.50exp(-20t) T
Magnitude of induce current at
t = 2s
We need to find the induced emf
This induced voltage, ε can be quantified by:
ε = −NdΦ/dt
Φ = BAcosθ, but θ = 90°, they are perpendicular
So, Φ = BA
ε = −NdΦ/dt = −N d(BA) / dt
A is a constant
ε = −NA dB/dt
Then, B = 0.50exp(-20t)
So, dB/dt = 0.5 × -20 exp(-20t)
dB/dt = -10exp(-20t)
So,
ε = −NA dB/dt
ε = −NA × -10exp(-20t)
ε = 10 × NA exp(-20t)
Now from ohms law, ε = iR
So, I = ε / R
I = 10 × NA exp(-20t) / R
Substituting the values given
I = 10×1× 7.85 ×10^-3×exp(-20×2)/0.2
I = 1.67 × 10^-18 A