Answer:
4Hg+2O2=4HgO
four Mercury + four oxygen
That would be correct as stated.
Answer:
Prompt Neutrons
Explanation:
Principle. Using uranium-235 as an example, this nucleus absorbs thermal neutrons, and the immediate mass products of a fission event are two large fission fragments, which are remnants of the formed uranium-236 nucleus. These fragments emit two or three free neutrons (2.5 on average), called prompt neutrons.
The pressure of the gas is 1.0 bar.
<em>pV</em> = <em>nRT</em>
<em>T</em> = (0 + 273.15) K = 273.15 K
<em>p</em> = (<em>nRT</em>)/<em>V</em> = (2.0 mol × 0.083 14 bar·L·K⁻¹mol⁻¹ × 273.15 K)/44.8 L = 1.0 bar
<u>Answer: </u><em>B. Adding more protons to a positively charged body until the number of protons matches the number of electrons</em>
Option B is the appropriate response
<u>Explanation:</u>
Utilising the equivalent number of inverse charges will kill a charged body.
Adding more protons to a decidedly charged body until the number of protons coordinates the quantity of electrons won't kill the body since protons are emphatically charged particles. Adding more protons to an emphatically charged body would make it all the more decidedly charged.
Enabling free electrons to escape from a contrarily charged body will kill since the more negative body leaves the negative electrons.