Answer:
The final pressure of the gas is 9.94 atm.
Explanation:
Given that,
Weight of argon = 0.16 mol
Initial volume = 70 cm³
Angle = 30°C
Final volume = 400 cm³
We need to calculate the initial pressure of gas
Using equation of ideal gas


Where, P = pressure
R = gas constant
T = temperature
Put the value in the equation



We need to calculate the final temperature
Using relation pressure and volume



Hence, The final pressure of the gas is 9.94 atm.
Answer: first one is electrochemical
Second one is combustion
Third one is photosynthesis
Fourth one is respiration
Answer: (B) There is complete destructive interference between the incoming and reflected waves
Explanation:
For example, if you pluck a guitar the waves will travel back and forth. They consist of nodes and anti-nodes. It is created, when the wave traveling to one side and bounces of the other end and comes back. As it travels to the other side, it is reflected thus, comes back. So standing waves occurs when there is interference.
When the wave is produced, the points where the string is not moving are called nodes and where they are moving are called anti-nodes. The positions where nodes are produced, destructive interference occurs and where anti-nodes are produced, constructive interference occurs
Answer:
Height above a surface
Explanation:
Gravitational potential energy is the energy which an object possesses due to its position above a surface.
It is also the amount of work a force has to do in order to bring an object from a particular position to a point of reference.
It is given mathematically as:
P. E. = m*g*h
where m = mass of the body
g = acceleration due to gravity
h = height above a surface
m*g represents the weight of the object.
Hence, Gravitational potential energy is the product of an object's weight and its height above a surface/reference point.
Answer:
The ratio is
Explanation:
From the question we are told that
The radius of Phobos orbit is R_2 = 9380 km
The radius of Deimos orbit is 
Generally from Kepler's third law

Here M is the mass of Mars which is constant
G is the gravitational constant
So we see that 
=> ![[\frac{T_1}{T_2} ]^2 = [\frac{R_1}{R_2} ]^3](https://tex.z-dn.net/?f=%5B%5Cfrac%7BT_1%7D%7BT_2%7D%20%5D%5E2%20%3D%20%20%5B%5Cfrac%7BR_1%7D%7BR_2%7D%20%5D%5E3)
Here
is the period of Deimos
and
is the period of Phobos
So
![[\frac{T_1}{T_2} ] = [\frac{R_1}{R_2} ]^{\frac{3}{2}}](https://tex.z-dn.net/?f=%5B%5Cfrac%7BT_1%7D%7BT_2%7D%20%5D%20%3D%20%20%5B%5Cfrac%7BR_1%7D%7BR_2%7D%20%5D%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D)
=> ![\frac{T_1}{T_2} = [\frac{23500 }{9380} ]^{\frac{3}{2}}]](https://tex.z-dn.net/?f=%5Cfrac%7BT_1%7D%7BT_2%7D%20%20%3D%20%20%5B%5Cfrac%7B23500%20%7D%7B9380%7D%20%5D%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%5D)
=>