Explanation:
Mass of bumper cars, 
Initial speed of car A, 
Initial speed of car Z, 
Final speed of car A after the collision, 
We need to find the velocity of car Z after the collision. Let it is equal to
. Using the conservation of momentum as :




So, the velocity of car Z after the collision is (-12 m/s). Hence, this is the required solution.
Answer:
Chemical energy, Energy stored in the bonds of chemical compounds. Chemical energy may be released during a chemical reaction, often in the form of heat; such reactions are called exothermic.
Answer:
4.245s
Explanation:
Given that,
Hypothetical value of speed of light in a vacuum is 18 m/s
Speed of the car, 14 m/s
Time given is 6.76 s, and we're asked to find the observed time, T
The relationship between the two times can be given as
T = t / √[1 - (v²/c²)]
The missing variable were looking for is t, and we can find it if we rearrange the formula and make t the subject
t = T / √[1 - (v²/c²)]
And now, we substitute the values and insert into the equation
t = 6.76 * √[1 - (14²/18²)]
t = 6.76 * √[1 - (196/324)]
t = 6.76 * √(1 - 0.605)
t = 6.76 * √0.395
t = 6.76 * 0.628
t = 4.245 s
Therefore, the time the driver measures for the trip is 4.245s
Answer:
false statement : b ) For the motion of a cart on an incline plane having a coefficient of kinetic friction of 0.5, the magnitude of the change in kinetic energy equals the magnitude of the change in gravitational potential energy
Explanation:
mechanical energy = potential energy + kinetic energy = constant
differentiating both side
Δ potential energy + Δ kinetic energy = 0
Δ potential energy = - Δ kinetic energy
first statement is true.
Friction is a non conservative force so inter-conversion of potential and kinetic energy is not possible in that case. In case of second option, the correct relation is as follows
change in gravitational potential energy = change in kinetic energy + work done against friction .
So given 2 nd option is incorrect.
In case of no change in gravitational energy , work done is equal to
change in kinetic energy.