A)Ep'=mgh=mgl(1-cosa).At the bottom of the swing Ep=0(reference level),so the potential energy as the child is just released is bigger than the potential energy at the bottom of the swing.;B)The speed of the child at the bottom of the swing-->v=√(2gh)=√[2gl(1-cosa)];C)I don't think that the tension does any work.
The work done by tension force of 14N applied on the laptop by a rope as it moves 2.0 mm up the slope is 0.028 J
W = F d cos θ
W = Work done
F = Force
d = Displacement
θ = Angle between force and displacement vector
F = 14 N
d = 2 mm = 0.002 m
θ = 0
W = 14 * 0.002 * 1
W = 0.028 J
Work done is the change in energy of an object. So if an object moves a certain distance, work is done on the object. If the force and displacement are perpendicular to each other there is no work done on the object.
Therefore, the work done by tension on the laptop is 0.028 J
To know more about work done
brainly.com/question/12834956
#SPJ4
The statement that is the most true regarding the states of matter is the first statement.
A. Most matter on Earth exists as a solid, liquid, or gas.
This is correct since most of the matter on Earth exists in those 3 states, meanwhile plasma is not a state that most of matter on earth is found in since it is mostly associated to stars and the external galactic regions.
Therefore, B is incorrect.
C is false, since almost of all of the matter on earth can transform and change through each of the 3 states of matter, solid, liquid, and gas.
D is false since most of the matter in universe is actually made out of plasma instead of a liquid. In fact, over 99% of the known universe's matter is said to consist of plasma.
Answer: a) 8.2 * 10^-8 N or 82 nN and b) is repulsive
Explanation: To solve this problem we have to use the Coulomb force for two point charged, it is given by:

Replacing the dat we obtain F=82 nN.
The force is repulsive because the points charged have the same sign.
The kinetic energy of the mass at the instant it passes back through its equilibrium position is about 1.20 J

<h3>Further explanation</h3>
Let's recall Elastic Potential Energy formula as follows:

where:
<em>Ep = elastic potential energy ( J )</em>
<em>k = spring constant ( N/m )</em>
<em>x = spring extension ( compression ) ( m )</em>
Let us now tackle the problem!

<u>Given:</u>
mass of object = m = 1.25 kg
initial extension = x = 0.0275 m
final extension = x' = 0.0735 - 0.0275 = 0.0460 m
<u>Asked:</u>
kinetic energy = Ek = ?
<u>Solution:</u>
<em>Firstly , we will calculate the spring constant by using </em><em>Hooke's Law</em><em> as follows:</em>






<em>Next , we will use </em><em>Conservation of Energy</em><em> formula to solve this problem:</em>







<h3>Learn more</h3>

<h3>Answer details</h3>
Grade: High School
Subject: Physics
Chapter: Elasticity