a). Perihelion . . . the point in Earth's orbit that's closest to the Sun.
We pass it every year early in January.
b). Aphelion . . . the point in Earth's orbit that's farthest from the Sun.
We pass it every year early in July.
c). Proxihelion . . . a made-up, meaningless word
d). Equinox . . . the points on the map of the stars where the Sun
appears to be on March 21 and September 21.
Answer:
Twice
Step-by-Step Explanation:
Time between 7:00 PM and 1:00 AM: 6 hours
Distance: 4818km
Since the distance is 4818km, and the time is 6 hours, you divide 4818 by 6.
803.0000015999 km/h.
The average speed is 803 km/h
Which considering the ideal case scenario if the plane starts at 0 reaches the speed of 803 and the end reduces its speed from 803 to 0. This means we have come across the value of 800 at least twice. Hence, the plane was travelling at a speed of 800 km/h at least 2 times.
<u>Answer:</u>
0.24 m
<u>Explanation:</u>
Given:
Wave velocity ( v ) = 360 m / sec
Frequency ( f ) = 1500 Hz
We have to calculate wavelength ( λ ):
We know:
v = λ / t [ f = 1 / t ]
v = λ f
= > λ = v / f
Putting values here we get:
= > λ = 360 / 1500 m
= > λ = 36 / 150 m
= > λ = 0.24 m
Hence, wavelength of sound is 0.24 m.
Here we will the speed of seagull which is v = 9 m/s
this is the speed of seagull when there is no effect of wind on it
now in part a)
if effect of wind is in opposite direction then it travels 6 km in 20 min
so the average speed is given by the ratio of total distance and total time


now since effect of wind is in opposite direction then we can say



Part b)
now if bird travels in the same direction of wind then we will have


now we can find the time to go back



Part c)
Total time of round trip when wind is present


now when there is no wind total time is given by


So due to wind time will be more
Answer:
–735.17 N
The negative sign indicate that the force is acting in opposition direction to the car.
Explanation:
The following data were obtained from the question:
Mass (m) of car = 782.10 kg
Initial velocity (u) = 7.60 m/s
Final velocity (v) = 3.61 m/s
Time (t) = 4.23 s
Force (F) =?
Next, we shall determine the acceleration of the car. This can be obtained as follow:
Initial velocity (u) = 7.60 m/s
Final velocity (v) = 3.61 m/s
Time (t) = 4.23 s
Acceleration (a) =?
a = (v – u) / t
a = (3.61 – 7.60) / 4.23
a = –3.99 / 4.23
a = –0.94 m/s²
Finally, we shall determine the force experienced by the car as shown below:
Mass (m) of car = 782.10 kg
Acceleration (a) = –0.94 m/s²
Force (F) =?
F = ma
F = 782.10 × –0.94
F = –735.17 N
The negative sign indicate that the force is acting in opposition direction to the car.