We can skip option B and D because NaCl is salt and H₂SO₄ is a strong acid.
Neutralization reactions are those reactions in which acid and base react to form salt and water.
As water being amphoteric in nature can react with HCl as follow,
HCl + H₂O ⇆ H₃O⁺ + OH⁻
In this case no salt is formed, so we can skip this option.
Ammonia being a weak base can abstract proton from HCl as follow,
HCl + NH₃ → NH₄Cl
Ammonium Chloride is a salt. So, among all four options, Option-C is the correct answer.
Answer:
The yearly release of
into the atmosphere is
.
Explanation:

Annual production of CaO = 
Moles of CaO :

According to reaction, 1 mole of CaO is produced along with 1 mole of carbon-dioxide.
Then along with
of CaO moles of carbon-dioxide moles produced will be:
of carbon-dioxide
Mass of
moles of carbon-dioxide:

The yearly release of
into the atmosphere is
.
Answer:
rate = kxyz
Explanation:
It is worth knowing that the rate low can only be determined by experimentation only not by just balancing equations. So here we are told that all the reactants x , y and z are all first order. This is important because we use this as exponents. That is why the exponents of all the reactants will be 1.
rate = kxyz
The atomic number of an element tells you the number of protons within said element.
Thermal energy equation is;
Q = mcΔθ
Q = Thermal energy
m = mass
c = specific heat
Δθ = Temperature difference
the hot cup of coffee has a higher temperature. But the mass of coffee is very low compared to the mass of water in swimming pool. The maximum temperature for coffee only can go up to 100 ⁰C since the boiling point of water is 100 ⁰C. But the mass of water in swimming pool is very large and the thermal enegy is very high compared to the coffee cup due to that reason.