Answer: The number of neutrons will increase as we move from left to right in a periodic table.
Explanation:
Atomic number is equal to the number of protons.
Mass number is the sum of number of neutrons and number of protons.
As we move from left to right, both the atomic number and mass number increases.
For example: As we move from Lithium to berrylium to boron to carbon to nitrogen to oxygen to fluorine to neon , the number of neutrons increase from 4 to 5 to 6 to 6 to 7 to 8 to 10 to 10.
Thus the number of neutrons will also increase as we move from left to right in a periodic table.
Correct answer is <span>Fuels do not have to be purchased to generate power.</span>
Answer:
<u>5 moles S x (36.02 g S/mole S) = 180.1 grams of S</u>
Explanation:
The periodic table has mass units for every element that can be correlated with the number of atoms of that element. The relationship is known as Avogadro's Number. This number, 6.02x
, is nicknamed the mole, which scientists found to be a lot more catchy, and easier to write than 6.02x
. <u>The mole is correlated to the atomic mass of that element.</u> The atomic mass of sulfur, S, is 36.02 AMU, atomic mass units. <u>But it can also be read as 36.02 grams/mole.</u>
<u></u>
<u>This means that 36.02 grams of S contains 1 mole (6.02x</u>
<u>) of S atoms</u>.
<u></u>
This relationship holds for all the elements. Zinc, Zn, has an atomic mass of 65.38 AMU, so it has a "molar mass" of 65.38 grams/mole. ^5.38 grams of Zn contains 1 mole of Zn atoms.
And so on.
5.0 moles of Sulfur would therefore contain:
(5.0 moles S)*(36.02 grams/mole S) = <u>180.1 grams of S</u>
Note how the units cancel to leaves just grams. The units are extremely helpful in mole calculations to insure the correct mathematical operation is done. To find the number of moles in 70 g of S, for example, we would write:
(70g S)/(36.02 grams S/mole S) = 1.94 moles of S. [<u>Note how the units cancel to leave just moles</u>]
Answer:
Cyanide
Explanation:
<em>Molecular Structure of Each Answer</em>
A: CN-
B: NO3-
C: OH-
D: SO4 2-
As you can see, only A (Cyanide) is the only compound that does not contain oxygen, meaning it is NOT an oxyanion.
Answer:
2C₂H₆ + [7]O₂ → [4]CO₂ + [6]H₂O
Explanation:
Chemical equation:
C₂H₆ + O₂ → CO₂ + H₂O
Balanced chemical equation:
2C₂H₆ + 7O₂ → 4CO₂ + 6H₂O
Step 1:
2C₂H₆ + O₂ → CO₂ + H₂O
Left hand side Right hand side
C = 4 C = 1
H = 12 H = 2
O = 2 O = 3
Step 2:
2C₂H₆ + O₂ → 4CO₂ + H₂O
Left hand side Right hand side
C = 4 C = 4
H = 12 H = 2
O = 2 O = 9
Step 3:
2C₂H₆ + O₂ → 4CO₂ + 6H₂O
Left hand side Right hand side
C = 4 C = 4
H = 12 H = 12
O = 2 O = 14
Step 4:
2C₂H₆ + 7O₂ → 4CO₂ + 6H₂O
Left hand side Right hand side
C = 4 C = 4
H = 12 H = 12
O = 14 O = 14