Answer:A hypothesis is a conjecture, based on knowledge obtained while seeking answers to the question
Explanation:
he process of the scientific method involves making conjectures (hypotheses), deriving predictions from them as logical consequences, and then carrying out experiments or empirical observations based on those predictions.
The ratio of the areas of the signals in the h NMR spectrum of pentan-3-ol is 6: 4: 1: 1. The correct option is A.
<h3>What is a NMR spectrum?</h3>
Nuclear magnetic resonance spectroscopy is a spectroscopy that shows the detailed structure and chemical environment of a chemical element.
Pentan-3-ol contain 12 hydrogen atoms. In H-NMR spectra, hydrogen atoms have same environment gives a signal.
There are 4 different kinds of signals due of the 4 different environment experienced by these 12 hydrogens.
Thus, the ratio of the areas of the signals in the h NMR spectrum of pentan-3-ol is 6: 4: 1: 1. The correct option is A.
Learn more about NMR spectrum
brainly.com/question/9812005
#SPJ4
Answer: 
Explanation:
Given : Sample size : n= 30 , it means it is a large sample (n≥ 30), so we use z-test .
Significance level : 
Critical value: 
Sample mean : 
Standard deviation : 
The formula to find the confidence interval is given by :-

i.e. 
i.e. 

Hence, the 95% confidence interval for the mean mpg in the entire population of that car model = 
Answer:
a. 2 HgO(s) ⇒ 2 Hg(l) + O₂(g)
b. 0.957 g
Explanation:
Step 1: Write the balanced equation
2 HgO(s) ⇒ 2 Hg(l) + O₂(g)
Step 2: Convert 130.0 °C to Kelvin
We will use the following expression.
K = °C + 273.15
K = 130.0°C + 273.15
K = 403.2 K
Step 3: Calculate the moles of O₂
We will use the ideal gas equation.
P × V = n × R × T
n = P × V/R × T
n = 1 atm × 0.0730 L/0.0821 atm.L/mol.K × 403.2 K
n = 2.21 × 10⁻³ mol
Step 4: Calculate the moles of HgO that produced 2.21 × 10⁻³ moles of O₂
The molar ratio of HgO to O₂ is 2:1. The moles of HgO required are 2/1 × 2.21 × 10⁻³ mol = 4.42 × 10⁻³ mol.
Step 5: Calculate the mass corresponding to 4.42 × 10⁻³ moles of HgO
The molar mass of HgO is 216.59 g/mol.
4.42 × 10⁻³ mol × 216.59 g/mol = 0.957 g
<em>answer:</em><em> </em><em>option </em><em>d </em><em>(</em><em>2</em><em>×</em><em>m</em><em>o</em><em>l</em><em>a</em><em>r</em><em> </em><em>mass </em><em>of </em><em>H </em><em>+</em><em>2</em><em>×</em><em>m</em><em>o</em><em>l</em><em>a</em><em>r</em><em> </em><em>mass </em><em>of </em><em>O</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em>