The second law states that the total entropy can never decrese over time for an isolated system
When we say "<span>The moon's surface gravity is one-sixth that of the earth.",
we mean that the acceleration of gravity on the Moon's surface is 1/6 of
the acceleration of gravity on the Earth's surface.
The acceleration of gravity is (9.8 m/s</span>²) on the Earth's surface, so
<span>it would be (9.8/6 m/s</span>²) on the Moon's surface.
<span>
The weight of any object, right now, is
(object's mass) </span>· (acceleration of gravity where the object is located now) .
<span>
If the object's mass is 24 kg and the object is on the Moon right now,
then its weight is
(24 kg) </span>· (9.8/6 m/s²)
= (24 · 9.8 / 6) kg-m/s²
= 39.2 Newtons
Answer:
A jet plane flying straight and at level at constant speed
Explanation:
The<em> inertial frame </em>of reference is a frame of reference in which all <em>Newton law is valid</em> ie Newton second law of motion and therefore newton first law of motion holds good. <em>The frame of reference does not accelerate.</em>
All the object that is in the frame of reference are at rest or moving with constant rectilinear motion with constant velocity unless acted upon by any force.
Answer:
They both have the same angular speed.
Explanation:
The mathematical formula for angular speed is:

where
is angular speed,
is a constant, and
is the period (the time it takes the marry-go-round to complete a lap).
What we can see from the formula is that, since the
does not change its value, the angular speed depends only on the period T.
In this case for both the children closer to the outher edge and for the children closer to the center, the time to complete a lap is the same, because the time does not depend on where they are sitting in the marry go round. This means that the period for both is the same.
Thus, since the period for both is the same, the angular speed given by
will also be the same