Answer:
The longer it takes to orbit the sun.
Explanation:
To find the mass you need to find the weight of a mol of the molecules by adding up the atomic mass.
N = 14.007 g/mol
H = 1.008 g/mol
S = 32.065 g/mol
O = 16 g/mol
2(14.007) + 8(1.008) + 32.065 + 4(16) = 132.143 g/mol
Now you know how much an entire mol weight you multiply it by how much you actually have
0.00456 * 132.143 = 0.603 g
Answer is: there is 2,69·10²³ atoms of bromine.
m(CH₂Br₂) = 39,0 g.
n(CH₂Br₂) = m(CH₂Br₂) ÷ M(CH₂Br₂).
n(CH₂Br₂) = 39 g ÷ 173,83 g/mol.
n(CH₂Br₂) = 0,224 mol.
In one molecule of CH₂Br₂, there is two bromine atoms, so:
n(CH₂Br₂) : n(Br) = 1 : 2.
n(Br) = 0,448 mol.
N(Br) = n(Br) · Na.
N(Br) = 0,448 mol · 6,022·10²³ 1/mol.
n(Br) = 2,69·10²³.
Answer:
Rock
Explanation:
Let's calculate the density of each object:
Rock:
Pencil:

Therefore the rock is denser.