Answer:
cm3 = 2500.0 g / 10.5 g/cm3 = 238 cm3
If the sun was not there the earth would travel in a straight line
Answer:
The mass of the jar and contents remained the same after the metal was burned.
Explanation:
My prediction about the experimental results is that the mass of the jar and contents remained the same after the metal was burned in the jar.
This is compliance with the law of conservation of mass which states that in a chemical reaction, matter is neither created nor destroyed by bonds are rearranged for new compounds to form.
- In compliance with this law, it is expected that the mass of the jar and its content will remain the same before and after the reaction.
- No new material was added and no material was removed from the jar.
The formation of chemical bonds occurs due to the attractive forces between oppositely charged ions (ionic bonds) or by sharing of electrons (covalent bonds).
An atom having tendency of attracting a shared pair of electrons towards itself and this chemical property is said to Electronegativity .
Thus, the attractive forces which draws in surrounding electrons for chemical bonds is electronegativity.
If reactants eventually collide,
there is an occurrence of reaction.
<span>
Therefore, when there is an increase concentration of
reactant, meaning to say that there are several moles of it every unit volume. An
example of this is a room having hundred of people will absolutely get higher
concentration compared to a room with one individual only.
Pertaining to effective collisions, if ever there is an
increase of concentration, the frequency and rate of effective collisions among
reactants surges in such a way that the rate of reaction also surges. Same with
passing into a room with only 1 individual compared to hundred people blind
persons, you probably want to proceed to the room with several people.</span>
<span>This is the simple logic
behind that scientific existence.</span>