Answer:
(i) -556 rad/s²
(ii) 17900 revolutions
(iii) 11250 meters
(iv) -55.6 m/s²
(v) 18 seconds
Explanation:
(i) Angular acceleration is change in angular velocity over time.
α = (ω − ω₀) / t
α = (10000 − 15000) / 9
α ≈ -556 rad/s²
(ii) Constant acceleration equation:
θ = θ₀ + ω₀ t + ½ αt²
θ = 0 + (15000) (9) + ½ (-556) (9)²
θ = 112500 radians
θ ≈ 17900 revolutions
(iii) Linear displacement equals radius times angular displacement:
s = rθ
s = (0.100 m) (112500 radians)
s = 11250 meters
(iv) Linear acceleration equals radius times angular acceleration:
a = rα
a = (0.100 m) (-556 rad/s²)
a = -55.6 m/s²
(v) Angular acceleration is change in angular velocity over time.
α = (ω − ω₀) / t
-556 = (0 − 15000) / t
t = 27
t − 9 = 18 seconds
Answer:
P₃ > P₁ > P₂
Explanation:
To rank pressure of the given situation
a) we know
Pressure at height h below
P = ρ g h
density of salt water, ρ = 1029 kg/m³
P₁ = 1029 x 10 x 0.2
P₁ = 2058 Pa
b) density of fresh water, ρ = 1000 kg/m³
P₂ = 1000 x 10 x 0.2
P₂ = 2000 Pa
c) density of mercury, ρ = 13593 kg/m³
P₃ = 13593 x 10 x 0.05
P₃ = 6796.5 Pa
Rank of Pressures from highest to lowest
P₃ > P₁ > P₂
Answer:
<em>Friction, force that resists the sliding or rolling of one solid object over another.</em>
Answer:
Bc the ocean is blue and the water reflects to the sky ;-;
Answer:
position 3
Explanation:
in position 3 PE is least as height is least
so KE is most as energy is always conserved