Answer:
1. E x 4πr² = ( Q x r³) / ( R³ x ε₀ )
Explanation:
According to the problem, Q is the charge on the non conducting sphere of radius R. Let ρ be the volume charge density of the non conducting sphere.
As shown in the figure, let r be the radius of the sphere inside the bigger non conducting sphere. Hence, the charge on the sphere of radius r is :
Q₁ = ∫ ρ dV
Here dV is the volume element of sphere of radius r.
Q₁ = ρ x 4π x ∫ r² dr
The limit of integration is from 0 to r as r is less than R.
Q₁ = (4π x ρ x r³ )/3
But volume charge density, ρ = 
So, 
Applying Gauss law of electrostatics ;
∫ E ds = Q₁/ε₀
Here E is electric field inside the sphere and ds is surface element of sphere of radius r.
Substitute the value of Q₁ in the above equation. Hence,
E x 4πr² = ( Q x r³) / ( R³ x ε₀ )
“Asexual reproduction is a type of reproduction by which offspring arise from a single organism, and inherit the genes of that parent only; it does not involve the fusion of gametes, and almost never changes the number of chromosomes.” -Wikipedia
Infrared light
it is also found under the name IR lights. although it’s technically invisible, it can still be seen with machinery up to at least 1050 nm in experiments.
If you're listening to a sound that has a steady pitch, and suddenly the
pitch goes up, then you know that two things could have happened:
EITHER ...
-- The person or other source making the sound could have
raised the pitch of the sound being produced.
OR ...
-- The person or other source making the sound could have
started moving toward you.
OR ...
-- both.
Even if the pitch of the sound leaving the source doesn't change,
you would still hear it increase if the source starts moving toward
you. That's the so-called "Doppler effect".