Answer:
v = 5.34[m/s]
Explanation:
In order to solve this problem, we must use the theorem of work and energy conservation. This theorem tells us that the sum of the mechanical energy in the initial state plus the work on or performed by a body must be equal to the mechanical energy in the final state.
Mechanical energy is defined as the sum of energies, kinetic, potential, and elastic.
E₁ = mechanical energy at initial state [J]

In the initial state, we only have kinetic energy, potential energy is not had since the reference point is taken below 1.5[m], and the reference point is taken as potential energy equal to zero.
In the final state, you have kinetic energy and potential since the car has climbed 1.5[m] of the hill. Elastic energy is not available since there are no springs.
E₂ = mechanical energy at final state [J]

Now we can use the first statement to get the first equation:

where:
W₁₋₂ = work from the state 1 to 2.


where:
h = elevation = 1.5 [m]
g = gravity acceleration = 9.81 [m/s²]

![58 = v^{2} +29.43\\v^{2} =28.57\\v=\sqrt{28.57}\\v=5.34[m/s]](https://tex.z-dn.net/?f=58%20%3D%20v%5E%7B2%7D%20%2B29.43%5C%5Cv%5E%7B2%7D%20%3D28.57%5C%5Cv%3D%5Csqrt%7B28.57%7D%5C%5Cv%3D5.34%5Bm%2Fs%5D)
Vertical forces:
There is a force of 579N acting upward, and a force of 579N
acting downward.
The vertical forces are balanced ... they add up to zero ...
so there's no vertical acceleration.
Not up, not down.
Horizontal forces:
There is a force of 487N acting to the left, and a force of 632N
acting to the right.
The net horizontal force is
(487-left + 632-right) - (632-right - 487-right) = 145N to the right.
The net force on the car is all to the right.
The car accelerates to the right.
Answer:
A hypothesis is a conjecture, based on knowledge obtained while seeking answers to the question. The hypothesis might be very specific, or it might be broad. Scientists then test hypotheses by conducting experiments or studies.
Explanation:
mark me as the brainliest
have a great day