1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
elixir [45]
3 years ago
13

Charge is uniformly distributed around a ring of radius R and the resulting electric field magnitude E is measured along the rin

g's central axis (perpendicular to the plane of the ring). At what distance from the ring's center is E maximum? (Use any variable or symbol stated above as necessary.)

Physics
1 answer:
Arte-miy333 [17]3 years ago
3 0

Answer:

x=\dfrac{r}{\sqrt2}

Explanation:

Given that

Radius =r

Electric filed =E

Q=Charge on the ring

The electric filed at distance x given as

E=K\dfrac{Q}{(r^2+x^2)^{3/2}}

For maximum condition

\dfrac{dE}{dx}=0

E=K{Q}{(r^2+x^2)^{-3/2}}

\dfrac{dE}{dx}=K{Q}{(r^2+x^2)^{-3/2}}-\dfrac{3}{2}\times 2\times x\times K{Q}{(r^2+x^2)^{-5/2}}

For maximum condition

\dfrac{dE}{dx}=0

K{Q}{(r^2+x^2)^{-3/2}}-\dfrac{3}{2}\times 2\times x\times K{Q}{(r^2+x^2)^{-5/2}}=0

r^2+x^2-3x^2=0

x=\dfrac{r}{\sqrt2}

At x=\dfrac{r}{\sqrt2} the electric field will be maximum.

You might be interested in
Light traveling through air at 3.00 · 10^8 m/s reaches an unknown medium and slows down to 2.00 · 10^8 m/s. What is the index of
nataly862011 [7]
V 1= 3.00 · 10^8 m/s
v 2 = 2.00 · 10^8 m/s
The index of refraction:
n = v 1 / v 2 = 3.00 · 10^8 m/s : 2.00 · 10^8 m/s = 1.5
Answer:
The index of refraction of that medium is 1.5
5 0
3 years ago
Read 2 more answers
A physics student throws a ball straight up. The student catches the ball in exactly the same place from which it was released.
mr Goodwill [35]

Answer:

The correct answer is H ÷ ¹/₂T

Explanation:

The formula for velocity is distance covered ÷ time.

Neglecting air resistance;

If the ball's time of overall time flight is T, the time it will take for the second half/return trip is ¹/₂T.

If the ball's maximum height above its released point is H, the height will also be the distance it covered for the second part of the trip since the student caught the ball in the exact same place the ball was thrown. Hence, the distance for the second half of the trip will be H.

Since velocity = distance/time

The average velocity during the second half of the trip will be = H ÷ ¹/₂T

4 0
3 years ago
Write down the symbols of nitrogen and neon?​
statuscvo [17]

Answer:

Nitrogen is N, neon is Ne

5 0
3 years ago
Read 2 more answers
Three-fourths of the elements on the
77julia77 [94]

Answer:

b

Explanation:

because the metalloids are the thing in the middle

8 0
3 years ago
A spring gun is made by compressing a spring in a tube and then latching the spring at the compressed position. A 4.97-g pellet
dimaraw [331]

Answer:

v  = 2.8898 \frac{m}{s}

Explanation:

This is a problem easily solve using energy conservation. As there are no non-conservative forces, we know that the energy is conserved.

When the spring is compressed downward, the spring has elastic potential energy. When the spring is relaxed, there is no elastic potential energy, but the pellet will have gained gravitational potential energy and kinetic energy. Lets see what are the terms for each of this.

<h3>Elastic potential energy</h3>

We know that a spring following Hooke's Law has a elastic potential energy:

E_{ep} = \frac{1}{2} k (\Delta x)^2

where \Delta x is the displacement from the relaxed length and k is the spring's constant.

To obtain the spring's constant, we know that Hooke's law states that the force made by the spring is :

\vec{F} = - k \Delta \vec{x}

as we need 9.12 N to compress 4.60 cm, this means:

k = \frac{9.12 \ N}{4.6 \ 10^{-2} \ m}

k = 198.26 \ \frac{ N}{m}

So, the elastic energy of the compressed spring is:

E_{ep} = \frac{1}{2} 198.26 \ \frac{ N}{m} (4.6 \ 10^{-2} \ m)^2

E_{ep} = 0.209759 \ Joules

And when the spring is relaxed, the elastic potential energy will be zero.

<h3>Gravitational potential energy</h3>

To see how much gravitational potential energy will the pellet win, we can use

\Delta E_{gp} = m g \Delta h

where m is the mass of the pellet, g is the acceleration due to gravity and \Delta h is the difference in height.

Taking all this together, the gravitational potential energy when the spring is relaxed will be:

\Delta E_{gp} = 4.97 \ 10^{-3} kg \ 9.8 \frac{m}{s^2} 4.6 \ 10^{-2} m

\Delta E_{gp} = 0.00224 \ Joules

<h3>Kinetic Energy</h3>

We know that the kinetic energy for a mass m moving at speed v is:

E_k = \frac{1}{2} m v^2

so, for the pellet will be

E_k = \frac{1}{2} \ 4.97 \ 10^{-3} kg \ v^2

<h3>All together</h3>

By conservation of energy, we know:

E_{ep} = \Delta E_{gp} + E_k

0.209759 \ Joules = 0.00224 \ Joules + \frac{1}{2} \ 4.97 \ 10^{-3} kg \ v^2

So

\frac{1}{2} \ 4.97 \ 10^{-3} kg \ v^2  = 0.209759 \ Joules - 0.00224 \ Joules

\frac{1}{2} \ 4.97 \ 10^{-3} kg \ v^2  = 0.207519 \ Joules

v  = \sqrt{ \frac{ 0.207519 \ Joules}{ \frac{1}{2} \ 4.97 \ 10^{-3} kg } }

v  = 2.8898 \frac{m}{s}

7 0
3 years ago
Other questions:
  • What is the mass of an atom that has 11 protons, 16 neutrons, and 11 electrons? 11 22 27 38
    13·1 answer
  • Anna learned that every magnet has a north and a south end called poles. One day, while she is playing with magnets she notices
    13·2 answers
  • What is the period of a wave if the frequency is? 5 Hz
    13·1 answer
  • PLEAASE HELP KE WITH THESE THREE YOULL GET POINTS
    6·1 answer
  • Which one of the following is an example of an indicator?
    7·1 answer
  • It has been suggested that rotating cylinders about 9 mi long and 5.9 mi in diameter be placed in space and used as colonies. Wh
    7·1 answer
  • A 250 GeV beam of protons is fired over a distance of 1 km. If the initial size of the wave packet is 1 mm, find its final size
    15·1 answer
  • An initially stationary object experiences an acceleration of 6 m/s2 for a time of 15 s. How far will it travel during that time
    7·1 answer
  • Which of the following is true of alternating current? Select all that apply.
    13·1 answer
  • What an objects movement is slowing down it is called ____acceleration
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!