A.) Electrons are Shared in a covalent bond.
Answer:
0.1 m/s
Explanation:
Please see attached photo for explanation.
Mass of 1st cart (m₁) = 500 g
Initial velocity of 1st cart (u₁) = 0.25 m/s
Mass of 2nd cart (m₂) = 750 g
Initial velocity of 2nd cart (u₂) = 0 m/s
Velocity (v) after collision =.?
m₁u₁ + m₂u₂ = v(m₁ + m₂)
(500 × 0.25) + (750 × 0) = v(500 + 750)
125 + 0 = v(1250)
125 = 1250v
Divide both side by 1250
v = 125 / 1250
v = 0.1 m/s
Thus, the two cart will move with a velocity of 0.1 m/s after collision.
Answer:
3.71 m/s in the negative direction
Explanation:
From collisions in momentum, we can establish the formula required here which is;
m1•u1 + m2•v2 = m1•v1 + m2•v2
Now, we are given;
m1 = 1.5 kg
m2 = 14 kg
u1 = 11 m/s
v1 = -1 m/s (negative due to the negative direction it is approaching)
u2 = -5 m/s (negative due to the negative direction it is moving)
Thus;
(1.5 × 11) + (14 × -5) = (1.5 × -1) + (14 × v2)
This gives;
16.5 - 70 = -1.5 + 14v2
Rearranging, we have;
16.5 + 1.5 - 70 = 14v2
-52 = 14v2
v2 = - 52/14
v2 = 3.71 m/s in the negative direction
Answer:

Explanation:
Given data
Mass m=67.0 kg
Final Speed vf=8.00 m/s
Initial Speed vi=2.00 m/s
Distance d=25.0 m
Force F=30.0 N
From work-energy theorem we know that the work done equals the change in kinetic energy
W=ΔK=Kf-Ki=1/2mvf²-1/2mvi²
And

So

and we know that the force the sprinter exerted Fsprinter the force of the headwind Fwind=30.0N
So
That's the definition of the PERIOD of the vibration.
It's exactly the reciprocal of the vibration's frequency.