transverse and longitudinal
Note: if the professor wants the distance between the m = 0 and m = 1 maxima to be 25 cm
Answer:
d = 1.0128×10⁻⁵m
Explanation:
given:
length L = 4.0m
maximum distance between m = 0 and m = 1 , y = 25cm = 0.25m
wavelength λ = 633nm = 633×10⁻⁹m
note:
dsinθ = mλ (constructive interference)
where d is slit seperation, θ is angle of seperation , m is order of interference , and λ is wavelength
for small angle
sinθ ≈ tanθ
mλ


d = 1.0128×10⁻⁵m
When boat is sunk into the liquid the net buoyancy on the boat is counterbalanced by weight of the boat
So here weight of the boat = Buoyancy force
let say boat is sunk by distance "h"
now we can say


now by above force balance equation we can write




so boat will sunk by total 5 mm distance
Substitute your values into the formula:
W = Work done = 288
= 360
Solve to find e:
e = 288 ÷ 360 = 0.8
Convert e to a percentage by multiplying by 100.
0.8 × 100 = 80
<h2>D. 80%</h2>