1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Len [333]
2 years ago
10

The alkline earth metals include?

Chemistry
1 answer:
patriot [66]2 years ago
5 0

Answer:

The Popular ones are five in number

Explanation:

Calcium

Silicon

Germanium

Tin

Lead

You might be interested in
Metals,nonmetals, metalloids
natta225 [31]

Answer

When elements combine to form compounds, there are two major types of bonding that can result.  Ionic bonds form when there is a transfer of electrons from one species to another, producing charged ions which attract each other very strongly by electrostatic interactions, and covalent bonds, which result when atoms share electrons to produce neutral molecules.  In general, metal and nonmetals combine to form ionic compounds, while nonmetals combine with other nonmetals to form covalent compounds (molecules).

Since the metals are further to the left on the periodic table, they have low ionization energies and low electron affinities, so they lose electrons relatively easily and gain them with difficulty.  They also have relatively few valence electrons, and can form ions (and thereby satisfy the octet rule) more easily by losing their valence electrons to form positively charged cations.

The main-group metals usually form charges that are the same as their group number:  that is, the Group 1A metals such as sodium and potassium form +1 charges, the Group 2A metals such as magnesium and calcium form 2+ charges, and the Group 3A metals such as aluminum form 3+ charges.

The metals which follow the transition metals (towards the bottom of Groups 4A and 5A) can lose either their outermost s and p electrons, forming charges that are identical to their group number, or they can lose just the p electrons while retaining their two s electrons, forming charges that are the group number minus two.  In other words, tin and lead in Group 4A can form either 4+ or 2+ charges, while bismuth in Group 5A can form either a 5+ or a 3+ charge.

The transition metals usually are capable of forming 2+ charges by losing their valence s electrons, but can also lose electrons from their d orbitals to form other charges.  Most of the transition metals can form more than one possible charge in ionic compounds.

Nonmetals are further to the right on the periodic table, and have high ionization energies and high electron affinities, so they gain electrons relatively easily, and lose them with difficulty.  They also have a larger number of valence electrons, and are already close to having a complete octet of eight electrons.  The nonmetals gain electrons until they have the same number of electrons as the nearest noble gas (Group 8A), forming negatively charged anions which have charges that are the group number minus eight.  That is, the Group 7A nonmetals form 1- charges, the Group 6A nonmetals form 2- charges, and the Group 5A metals form 3- charges.  The Group 8A elements already have eight electrons in their valence shells, and have little tendency to either gain or lose electrons, and do not readily form ionic or molecular compounds.

Ionic compounds are held together in a regular array called a crystal lattice by the attractive forces between the oppositely charged cations and anions.  These attractive forces are very strong, and most ionic compounds therefore have very high melting points.  (For instance, sodium chloride, NaCl, melts at 801°C, while aluminum oxide, Al2O3, melts at 2054°C.)  Ionic compounds are typically hard, rigid, and brittle.  Ionic compounds do not conduct electricity, because the ions are not free to move in the solid phase, but ionic compounds can conduct electricity when they are dissolved in water.

Explanation:

5 0
2 years ago
Energy is the ability to do work or produce heat.<br> True<br> False
Dmitrij [34]

Answer: true

Explanation: hope this helpes

5 0
2 years ago
Read 2 more answers
What is the atomic number of carbon and the number of protons
nevsk [136]
A) if you have a period table handy it’s the number in the top left hand corner of the element
7 0
2 years ago
A 3.00 L flexible container holds a sample of hydrogen gas at 153 kPa. If the pressure increases to 203 kPa and the temperature
dybincka [34]

To solve this we assume that the gas is an ideal gas. Then, we can use the ideal gas equation which is expressed as PV = nRT. At a constant temperature and number of moles of the gas the product of PV is equal to some constant. At another set of condition of temperature, the constant is still the same. Calculations are as follows:

 

P1V1 =P2V2

V2 = P1 V1 / P2

V2 = 153 x 3.00 / 203

<span>V2 = 2.26 L</span>

3 0
2 years ago
Consider the process used to produce iron metal from its ore.
Dmitry_Shevchenko [17]

Answer:

223.4 grams of iron can be produced from 2.5 moles of Fe2O3 and 6.0 moles of CO.

Explanation:

The balanced reaction is:

Fe₂O₃ (s) + 3 CO(g) → 2 Fe(s) + 3 CO₂ (g)

By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of reactant and product participate in the reaction:

  • Fe₂O₃: 1 mole
  • CO: 3 moles
  • Fe: 2 moles
  • CO₂: 3 moles

Being:

  • Fe: 55.85 g/mole
  • O: 16 g/mole
  • C: 12 g/mole

the molar mass of the compounds participating in the reaction is:

  • Fe₂O₃: 2*55.85 g/mole + 3*16 g/mole= 159.7 g/mole
  • CO: 12 g/mole + 16 g/mole= 28 g/mole
  • Fe: 55.85 g/mole
  • CO₂: 12 g/mole + 2*16 g/mole= 44 g/mole

Then, by stoichiometry of the reaction, the following quantities participate in the reaction:

  • Fe₂O₃: 1 mole* 159.7 g/mole= 159.7 g
  • CO: 3 moles* 28 g/mole= 84 g
  • Fe: 2 moles* 55.85 g/mole= 111.7 g
  • CO₂: 3 moles* 44 g/mole= 132 g

The limiting reagent is one that is consumed first in its entirety, determining the amount of product in the reaction. When the limiting reagent is finished, the chemical reaction will stop.

So, first of all, you can apply the following rule of three: if by reaction stoichiometry 1 mole of Fe₂O₃ reacts with 3 moles of CO, then 2.5 moles of Fe₂O₃ react with how many moles of CO?

moles of CO=\frac{2.5 moles of Fe_{2} O_{3}*3 moles of CO }{1 mole of Fe_{2} O_{3}}

moles of CO= 7.5

But 7.5 moles of CO are not available, 6.0 moles are available. Since you have less moles than you need to react with 2.5 moles of Fe₂O₃, CO will be the limiting reagent.

Now you can apply the following rule of three: if by reaction stoichiometry 3 moles of CO produce with 111.7 grams of Fe, then 6 moles of CO will produce how much mass of Fe?

mass of Fe=\frac{6 moles of CO*111.7 grams of Fe}{3 moles of CO}

mass of Fe= 223.4 grams

<u><em>223.4 grams of iron can be produced from 2.5 moles of Fe2O3 and 6.0 moles of CO.</em></u>

5 0
2 years ago
Other questions:
  • A possible mechanism for the reaction of chlorine gas and chloroform to produce carbon tetrachloride and hydrogen chloride is gi
    8·1 answer
  • Use the worked example above to help you solve this problem. An electrical heater is operated by applying a potential difference
    10·1 answer
  • Which term best describes how the solar system form?
    11·2 answers
  • How much energy must be added to a bowl of 125popcorn kernels in order for them to reach a popping temperature of 175°C? Assume
    7·1 answer
  • Bromine + calcium iodide  calcium bromide + iodine
    11·2 answers
  • What 2 factors determine whether a collision between reactants is effective
    7·1 answer
  • I need help in 5 minutes please
    13·1 answer
  • 3) Determine the element of the lowest atomic number whose "ground state" contains:
    14·1 answer
  • State the two laws of chemical combination.​
    14·1 answer
  • Why are no flying dinosaur fossils found in rocks that are younger than those
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!