1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zmey [24]
3 years ago
9

A block of mass m moving with a velocity v collides with a mass 2m at rest. Consider the collision is elastic, we have to find t

he final velocities of both masses.
Physics
1 answer:
lions [1.4K]3 years ago
5 0

Answer:

vf_{1} =\frac{1}{3} v:Final block velocity (toward the left)

vf_{2} =\frac{2}{3} v :Final mass velocity (to the right)

Explanation:

To solve this problem we apply the theory of shocks:

In an elastic shock the kinetic energy and the amount of linear movement or momentum are conserved.

Because the shock is elastic, the coefficient of elastic restitution (e) is equal to 1.

Principle of conservation of the momentum:

m1vi1+m2vi2=m1vf1+m2vf2 Equation 1

Formula to calculate the coefficient of elastic restitution (e):

e=\frac{vf_{2}-vf_{1}  }{vi_{1}-vi_{2}  } Equation 2

m1: Block mass

m2: mass of the  body that collides with the block

Vi1,vf1: initial, final velocity of the block

Vi2,vf2: initial, final velocity of the  body that collides with the block

Of the problem data we know that:

m1=m , m2 = 2m, vi1=v and vi2=0,  then, we replace this information in equation (1) :

mv+0=mvf1+2mvf2  we divide by m:

v=vf1+2vf2 Equation (3)

Because the shock is elastic, the coefficient of elastic restitution (e) is equal to 1,then , we we replace this information in equation (2)

1=\frac{vf_{2}-vf_{1}  }{v-0}  

v=vf2-vf1 Equation (4)

vf2=v+vf1 Equation (5)

We replace the equation 5 in the equation (3)

v=vf1+2(v+vf1)

v=vf1+2v+2vf1

-3vf1=v

vf_{1} = -\frac{1}{3} v

We replace Vf1=(-1/3)v in the equation (5):

vf_{2} =v-\frac{1}{3} v

vf_{2} =\frac{2}{3} v

Answer;

vf_{1} =\frac{1}{3} v:Final block velocity (toward the left)

vf_{2} =\frac{2}{3} v :Final mass velocity (to the right)

You might be interested in
Is a force that opposes the motion between two objects in contact with each other.
Sergeeva-Olga [200]

Answer: Friction  :)        

7 0
3 years ago
Read 2 more answers
What is a stream’s discharge rate if it has a width of 10 meters, a depth of 2 meters, and a velocity of 2 meters per second?
julia-pushkina [17]

A stream’s discharge rate if it has a width of 10 meters, a depth of 2 meters, and a velocity of 2 meters per second will be 40 m^{3}/sec .

Discharge rate = velocity * area

                 = velocity * depth * width

                 = 2 * 2 * 10 = 40 m^{3}/sec

A stream’s discharge rate if it has a width of 10 meters, a depth of 2 meters, and a velocity of 2 meters per second will be 40 m^{3}/sec .

learn more about discharge rate

brainly.com/question/20709500?referrer=searchResults

#SPJ4

4 0
2 years ago
8. An object accelerates 12.0 m/s2 when a force of 6.0 newtons is applied to it. What is the mass of the object? _______________
Sholpan [36]

Answer:

Mass of object is 0.5kg

Explanation:

Given the following data;

Force = 6N

Acceleration = 12m/s²

Mass =?

Force is given by the multiplication of mass and acceleration.

Mathematically, Force is;

F = ma

Where;

F represents force.

m represents the mass of an object.

a represents acceleration.

Making mass (m) the subject, we have;

Mass (m) = \frac{F}{a}

Substituting into the equation;

Mass (m) = \frac{6}{12}

Mass, m = 0.5kg.

Therefore, the mass of the object is 0.5kg

5 0
3 years ago
A 58.0-kg projectile is fired at an angle of 30.0° above the horizontal with an initial speed of 140 m/s from the top of a cliff
strojnjashka [21]

(a) 6.43\cdot 10^5 J

The total mechanical energy of the projectile at the beginning is the sum of the initial kinetic energy (K) and potential energy (U):

E=K+U

The initial kinetic energy is:

K=\frac{1}{2}mv^2

where m = 58.0 kg is the mass of the projectile and v=140 m/s is the initial speed. Substituting,

K=\frac{1}{2}(58 kg)(140 m/s)^2=5.68\cdot 10^5 J

The initial potential energy is given by

U=mgh

where g=9.8 m/s^2 is the gravitational acceleration and h=132 m is the height of the cliff. Substituting,

U=(58.0 kg)(9.8 m/s^2)(132 m)=7.5\cdot 10^4 J

So, the initial mechanical energy is

E=K+U=5.68\cdot 10^5 J+7.5\cdot 10^4 J=6.43\cdot 10^5 J

(b) -1.67 \cdot 10^5 J

We need to calculate the total mechanical energy of the projectile when it reaches its maximum height of y=336 m, where it is travelling at a speed of v=99.2 m/s.

The kinetic energy is

K=\frac{1}{2}(58 kg)(99.2 m/s)^2=2.85\cdot 10^5 J

while the potential energy is

U=(58.0 kg)(9.8 m/s^2)(336 m)=1.91\cdot 10^5 J

So, the mechanical energy is

E=K+U=2.85\cdot 10^5 J+1.91 \cdot 10^5 J=4.76\cdot 10^5 J

And the work done by friction is equal to the difference between the initial mechanical energy of the projectile, and the new mechanical energy:

W=E_f-E_i=4.76\cdot 10^5 J-6.43\cdot 10^5 J=-1.67 \cdot 10^5 J

And the work is negative because air friction is opposite to the direction of motion of the projectile.

(c) 88.1 m/s

The work done by air friction when the projectile goes down is one and a half times (which means 1.5 times) the work done when it is going up, so:

W=(1.5)(-1.67\cdot 10^5 J)=-2.51\cdot 10^5 J

When the projectile hits the ground, its potential energy is zero, because the heigth is zero: h=0, U=0. So, the projectile has only kinetic energy:

E = K

The final mechanical energy of the projectile will be the mechanical energy at the point of maximum height plus the work done by friction:

E_f = E_h + W=4.76\cdot 10^5 J +(-2.51\cdot 10^5 J)=2.25\cdot 10^5 J

And this is only kinetic energy:

E=K=\frac{1}{2}mv^2

So, we can solve to find the final speed:

v=\sqrt{\frac{2E}{m}}=\sqrt{\frac{2(2.25\cdot 10^5 J)}{58 kg}}=88.1 m/s

4 0
3 years ago
Which is the basis of the major rock classifications?
sattari [20]
The answer would be B the method of rock formation 
7 0
3 years ago
Other questions:
  • After a party the host pours the remnants of several bottles of wine into a jug. He then inserts a cork with a 2.25-cm diameter
    9·1 answer
  • What is an example of chemical potential energy in humans?
    15·1 answer
  • Object A has a mass of 10 kg and is moving at a velocity of 2.0
    14·1 answer
  • Which lenses are convex? Check all that apply. 1 2 3 4 5 6
    10·2 answers
  • A suspicious-looking man runs as fast as he can along a moving sidewalk from one end to the other, taking 2.50 s. Then security
    7·2 answers
  • the loudness of a person's voice depends on the A. force with which air rushes across the vocal folds B. strength of the intrins
    14·1 answer
  • What is air resistance means explain it with free falling body​
    10·1 answer
  • In order to increase his gravitational potential energy by an amount equal to his kinetic energy at full speed, how high would s
    7·1 answer
  • FIRST TO ANSWER CORRECTLY GETS BRAIBLIEST!!
    8·1 answer
  • 1. How much energy is needed just to melt 0.56kg of ice at 0◦ C?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!