Answer:
(A) 2.4 N-m
(B) 
(C) 315.426 rad/sec
(D) 1741.13 J
(E) 725.481 rad
Explanation:
We have given mass of the disk m = 4.9 kg
Radius r = 0.12 m, that is distance = 0.12 m
Force F = 20 N
(a) Torque is equal to product of force and distance
So torque
, here F is force and r is distance
So 
(B) Moment of inertia is equal to 
So 
Torque is equal to 
So angular acceleration 
(C) As the disk starts from rest
So initial angular speed 
Time t = 4.6 sec
From first equation of motion we know that 
So 
(D) Kinetic energy is equal to 
(E) From second equation of motion

Answer:
Derived units are derived from these 7 base units. Derived units are dependent on the base units and are not independent of each other. ... Mass has SI units of kg, distance is measured in m and t has the SI unit of second. Thus, SI unit of force is kg.
Answer:
Impulse = 88 kg m/s
Mass = 8.8 kg
Explanation:
<u>We are given a graph of Force vs. Time. Looking at the graph we can see that the Force acts approximately between the time interval from 1sec to 4sec. </u>
Newton's Second Law relates an object's acceleration as a function of both the object's mass and the applied net force on the object. It is expressed as:
Eqn. (1)
where
: is the Net Force in Newtons (
)
: is the mass (
)
: is the acceleration (
)
We also know that the acceleration is denoted by the velocity (
) of an object as a function of time (
) with
Eqn. (2)
Now substituting Eqn. (2) into Eqn. (1) we have
Eqn. (3)
However since in Eqn. (3) the time-variable is present, as a result the left hand side (i.e.
is in fact the Impulse
of the cart ), whilst the right hand side denotes the change in momentum of the cart, which by definition gives as the impulse. Also from the graph we can say that the Net Force is approximately ≈
and
(thus just before the cut-off time of the force acting).
Thus to find the Impulse we have:

So the impulse of the cart is 
Then, we know that the cart is moving at
. Plugging in the values in Eqn. (3) we have:

So the mass of the cart is
.
17. C. Isotopes
18. Tracers
19. Alpha Decay