A chemical formula identifies each constituent element by its chemical symbol and indicates the proportionate number of atoms of each element.
<em>For example, the empirical formula of ethanol may be written C2H6O because the molecules of ethanol all contain two carbon atoms, six hydrogen atoms, and one oxygen atom.</em>
Answer:
<em>yes</em>
Explanation:
the cuttle fish tell the difference between blue and yellow
When the charged balloon is brought near the wall, it repels some of the negatively charged electrons in that part of the wall. Therefore, that part of the wall is left repelled.
<u>Explanation</u>:
- Balloons don't stick to walls. However, if you rub the balloon on an appropriate piece of material such as clothing or a wall, electrons are pulled from the other material to the balloon.
- The balloon now as more electrons than normal and therefore has an overall negative charge. Two balloons like this will repel each other.
- The other material now has an overall positive charge. Because opposite charges attract, the balloon will now appear to stick to the other material. If you didn't rub the balloon first, it's charge would be neutral and it wouldn't stick to the wall.
Answer: The average atomic mass of the element = 88.242amu
Explanation:
The abundance of the first isotope is =35.5%
Atomic mass of first isotope = 68.9257
The average atomic mass of the first isotope =86.95amu X 35.5% =86.95amu X 0.355 =30.8725 amu
The abundance of the second isotope =64.5%
Atomic mass of the second isotope =88.95amu
The average atomic mass of second isotope =88.95amu x 64.5% = 88.95amu x 0.645= 57.37275 amu
Now the average atomic mass =30.8725 +57.37275 = 88.242amu
OR using the formulae
Average atomic mass = [mass of isotope× its abundance] + [mass of isotope× its abundance] +...[ ] / 100
{(86.95amu X 35.5 )+(88.95amu x 64.5)}/100
8,824/100
=88.24amu