Answer:
Explanation:
We shall apply conservation of momentum law in vector form to solve the problem .
Initial momentum = 0
momentum of 12 g piece
= .012 x 37 i since it moves along x axis .
= .444 i
momentum of 22 g
= .022 x 34 j
= .748 j
Let momentum of third piece = p
total momentum
= p + .444 i + .748 j
so
applying conservation law of momentum
p + .444 i + .748 j = 0
p = - .444 i - .748 j
magnitude of p
= √ ( .444² + .748² )
= .87 kg m /s
mass of third piece = 58 - ( 12 + 22 )
= 24 g = .024 kg
if v be its velocity
.024 v = .87
v = 36.25 m / s .
Answer:
A fuse and circuit breaker both serve to protect an overloaded electrical circuit by interrupting the continuity, or the flow of electricity. ... Fuses tend to be quicker to interrupt the flow of power, but must be replaced after they melt, while circuit breakers can usually simply be reset.
It can be described as <span>a pure substance and an element. </span>
Answer:
C) The function F(x) for 0 < x < 5, the block's initial velocity, and the value of Fr.
Explanation:
Yo want to prove the following equation:
That is, the net force exerted on an object is equal to the change in the kinetic energy of the object.
The previous equation is also equal to:
(1)
m: mass of the block
vf: final velocity
v_o: initial velocity
Ff: friction force
F(x): Force
x: distance
You know the values of vf, m and x.
In order to prove the equation (1) it is necessary that you have C The function F(x) for 0 < x < 5, the block's initial velocity, and the value of F. Thus you can calculate experimentally both sides of the equation.
While riding in a hot air balloon,
which is steadily at a speed of 1.01 m/s, and your phone accidentally falls.
<span>(a)
</span>The
speed of your phone after 4 s is:
V= u +
at
V= 1.01
+ (9.8)(4)
V=
40.21 m/s
<span>(b)
</span>The balloon
is ____ far:
V = u +
at
V= 1.01
+ (9.8)(1)
V=10.81
–distance at 1 one second
V= u +
at
V= 1.01
+ (9.8)(2)
V= 20.61-distance
at 2 seconds
V= u+ at
V=
30.41- distance at 3 seconds
V=
40.21- distance at 4 seconds
D=
102.04 m
<span>(c)
</span>If the
balloon is rising steadily at 1.01 m/s:
V= -1.1
m/s
<span> </span>