1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dmitry [639]
3 years ago
7

A positively charged wire with uniform charge density +λ lies along the x-axis and a negatively charged wire with uniform charge

density –λ lies along the y-axis (both lines are infinitely long). Find the electric field at the point (x, y). You may look up the electric field due to an infinitely long wire with uniform charge density
Physics
1 answer:
Kisachek [45]3 years ago
5 0

Answer:

\vec{E} = \frac{\lambda}{2\pi\epsilon_0}[\frac{1}{y}(\^y) - \frac{1}{x}(\^x)]

Explanation:

The electric field created by an infinitely long wire can be found by Gauss' Law.

\int \vec{E}d\vec{a} = \frac{Q_{enc}}{\epsilon_0}\\E2\pi r h = \frac{\lambda h}{\epsilon_0}\\\vec{E} = \frac{\lambda}{2\pi\epsilon_0 r} \^r

For the electric field at point (x,y), the superposition of electric fields created by both lines should be calculated. The distance 'r' for the first wire is equal to 'y', and equal to 'x' for the second wire.

\vec{E} = \vec{E}_1 + \vec{E}_2 = \frac{\lambda}{2\pi\epsilon_0 y}(\^y) + \frac{-\lambda}{2\pi\epsilon_0 x}(\^x)\\\vec{E} = \frac{\lambda}{2\pi\epsilon_0 y}(\^y) - \frac{\lambda}{2\pi\epsilon_0 x}(\^x)\\\vec{E} = \frac{\lambda}{2\pi\epsilon_0}[\frac{1}{y}(\^y) - \frac{1}{x}(\^x)]

You might be interested in
Jane is sliding down a slide. What kind of motion is she demonstrating? A. translational motion B. rotational motion C. vibratio
Andreyy89
A. translational motion
5 0
3 years ago
Humans first traveled to the Moon in a spacecraft in 1969. What happened as the spacecraft traveled farther from Earth?
horsena [70]

Answer:

The answer is C)The force of gravity from Earth acting on the spacecraft decreased because the distance from Earth increased.

Explanation:

Gravity, a force, is dependent on the mass of the object exerting the gravity and the distance of an outside object from that object. The larger the object, the more gravity it will exert on an outside object. This force decreases as you move away from the object, but it will always still exist and never be equal to 0.

4 0
3 years ago
Read 2 more answers
You push a table 8 meters for 16 minuutes and do 6720 j of work how much power do ypu use
Yuri [45]
P=W/t

P=Power
W=Work
t=Time

Convert 16 minutes in seconds:
16 mins = 960 secs

P=6720/960=7.23 W [Watt]
3 0
3 years ago
Part D
anygoal [31]

Answer: I didn't see a difference because the large ball's vertical displacement and velocity are the same as the small one's.

Explanation:

5 0
3 years ago
A BMX bicycle rider takes off from a ramp at a point 2.4 m above the ground. The ramp is angled at 40 degrees from the horizonta
adoni [48]

Answer:

The BMX lands 5.4 m from the end of the ramp.

Explanation:

Hi there!

The position of the BMX is given by the position vector "r":

r = (x0 + v0 · t · cos α, y0 + v0 · t · sin α + 1/2 · g · t²)

Where:

r = position vector at time t

x0 = initial horizontal position

v0 = initial velocity

α = jumping angle

y0 = initial vertical position

g = acceleration due to gravity (-9.8 m/s² considering the upward direction as positive)

Please, see the attached graphic for a better understanding of the situation. At final time, when the bicycle reaches the ground, the vector position will be "r final" (see figure). The y-component of the vector "r final" is - 2.4 m (placing the origin of the frame of reference at the jumping point). With that information, we can use the equation of the y-component of the vector "r" (see above) to calculate the time of flight. With that time, we can then obtain the x-component (rx in the figure) of the vector "r final". Then:

y = y0 + v0 · t · sin α + 1/2 · g · t²

-2.4 m = 0 m + 5.9 m/s · t · sin 40° - 1/2 · 9.8 m/s² · t²

0 = -4.9 m/s² · t² + 5.9 m/s · t · sin 40° + 2.4 m

Solving the quadratic equation:

t = 1.2 s

Now, we can calculate the x-component of the vector "r final" that is the horizontal distance traveled by the bicycle:

x = x0 + v0 · t · cos α

x = 0 m + 5.9 m/s · 1.2 s · cos 40°

x = 5.4 m

The BMX lands 5.4 m from the end of the ramp.

Have a nice day!

8 0
3 years ago
Other questions:
  • Scientists communicate results in a variety of ways that include but are not limited to published scientific journals and period
    7·1 answer
  • Based on its orbit, which planet behaves the least like the others?
    14·1 answer
  • A point charge of 4.0 µC is placed at a distance of 0.10 m from a hard rubber rod with an electric field of 1.0 × 103 . What is
    11·2 answers
  • At a race track, a car of mass 1150 kg crashes into a concrete wall at a speed of 85 m/s a. If the car comes to a stop when it h
    10·1 answer
  • If you drop a bar of soap on the floor is it clean or dirty
    10·2 answers
  • Soils refers to natural material from the earth, but not artificial material (like AstroTurf or asphalt). True False
    9·2 answers
  • For any planet, if the planet were to shrink, but have constant mass, what would happen to the value of gravity acceleration (g)
    5·1 answer
  • A behavior that is developed by observing others or being taught is
    9·2 answers
  • What is so soothing about the ocean? And why are some people afraid of the ocean?
    9·2 answers
  • Can someone please help with this problem?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!