Answer:
Steps:
1. Create a text file that contains blade diameter (in feet), wind velocity (in mph) and the approximate electricity generated for the year
2. load the data file for example, in matlab, use ('fileame.txt') to load the file
3. create variables from each column of your data
for example, in matlab,
x=t{1}
y=t{2}
4. plot the wind velocity and electricity generated.
plot(x, y)
5. Label the individual axis and name the graph title.
title('Graph of wind velocity vs approximate electricity generated for the year')
xlabel('wind velocity')
ylabel('approximate electricity generated for the year')
youn need to use your hands
Answer:
True
Explanation:
This is a true fact because From the time you are born to around the time you turn 30, your muscles grow larger and stronger.
Answer:
≅ 111 KN
Explanation:
Given that;
A medium-sized jet has a 3.8-mm-diameter i.e diameter (d) = 3.8
mass = 85,000 kg
drag co-efficient (C) = 0.37
(velocity (v)= 230 m/s
density (ρ) = 1.0 kg/m³
To calculate the thrust; we need to determine the relation of the drag force; which is given as:
=
× CρAv²
where;
ρ = density of air wind.
C = drag co-efficient
A = Area of the jet
v = velocity of the jet
From the question, we can deduce that the jet is in motion with a constant speed; as such: the net force acting on the jet in the air = 0
SO, 
We can as well say:

We can now replace
in the above equation.
Therefore,
=
× CρAv²
The A which stands as the area of the jet is given by the formula:

We can now have a new equation after substituting our A into the previous equation as:
=
× Cρ 
Substituting our data from above; we have:
=
× 
= 
= 110,990N
in N (newton) to KN (kilo-newton) will be:
= 
= 110.990 KN
≅ 111 KN
In conclusion, the jet engine needed to provide 111 KN thrust in order to cruise at 230 m/s at an altitude where the air density is 1.0 kg/m³.
I believe the answer is D: brazing
Hope this helps you have a good night