Ca₁₀(PO₄)₆(OH)₂ or Ca(OH)₂·3Ca₃(PO₄)₂
PO₄³⁻ phosphate ion
OH⁻ oxyhydroxide ion
Ca²⁺ calcium ion
10*(+2) + 6*(-3) + 2*(-1) = 0
10Ca²⁺ 6PO₄³⁻ 2OH⁻
Particles in gaseous state have the greatest distance between them. This is because the gas particles have a greater kinetic energy because of which they move far apart from each other. If we take water, in steam (water vapor) the particles are far apart from each other when compared to liquid water and solid ice.
Answer:
6.1 cm³
Explanation:
To solve this problem we first need to keep in mind <em>Archimedes' principle</em>:
- The volume of water (or any fluid) displaced by a submerged object is equal to the object's volume.
With that in mind we <u>calculate the volume of the granite piece in mililiters</u>:
- Volume displaced = 47.6 mL - 41.5 mL = 6.1 mL
- Volume of the granite piece = 6.1 mL
Given that one cubic centimeter is equal to one mililiter, the volume of the granite piece in cm³ is 6.1 cm³.
Answer:
3 : 1
Explanation:
Let the rate of He be R1
Molar Mass of He (M1) = 4g/mol
Let the rate of O2 be R2
Molar Mass of O2 (M2) = 32g/mol
Recall:
R1/R2 = √(M2/M1)
R1/R2 = √(32/4)
R1/R2 = √8
R1/R2 = 3
The ratio of rate of effusion of Helium to oxygen is 3 : 1