1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
raketka [301]
3 years ago
5

A rigid tank contains 1 kg of oxygen (O2) at p1 = 35 bar, T1 = 180 K. The gas is cooled until the temperature drops to 150 K. De

termine the volume of the tank, in m3, and the final pressure, in bar, using the:
(a) ideal gas equation of state.
(b) Redlich–Kwong equation.
Engineering
1 answer:
andreyandreev [35.5K]3 years ago
3 0

Answer:

a. Volume = 13.36 x 10^-3 m³ Pressure = 29.17 bar  b. Volume = 14.06 x 10^-3 m³ Pressure = 22.5 bar

Explanation:

Mass of O₂ = 1kg, Pressure (P1) = 35bar, T1= 180K, T2= 150k Molecular weight of O₂ = 32kg/Kmol

Volume of tank and final pressure using a)Ideal Gas Equation and b) Redlich - Kwong Equation

a. PV=mRT

V = {1 x (8314/32) x 180}/(35 x 10⁵) = 13.36 x 10^-3

Since it is a rigid tank the volume of the tank must remain constant and hnece we can say

T2/T1 = P2/P1, solving for P2

P2 = (150/180) x 35 = 29.17bar

b. P1 = {RT1/(v1-b)} - {a/v1(v1+b)(√T1)}

where R, a and b are constants with the values of, R = 0.08314bar.m³/kmol.K, a = 17.22(m³/kmol)√k, b = 0.02197m³/kmol

solving for v1

35 = {(0.08314 x 180)/(v1 - 0.02197)} - {17.22/(v1)(v1 + 0.02197)(√180)}

35 = {14.96542/(v1-0.02197)} - {1.2835/v1(v1 + 0.02197)}

Using Trial method to find v1

for v1 = 0.5

Right hand side becomes =  {14.96542/(0.5-0.02197)} - {1.2835/0.5(0.5 + 0.02197)} = 31.30 ≠ Left hand side

for v1 = 0.4

Right hand side becomes =  {14.96542/(0.4-0.02197)} - {1.2835/0.4(0.4 + 0.02197)} = 39.58 ≠ Left hand side

for v1 = 0.45

Right hand side becomes =  {14.96542/(0.45-0.02197)} - {1.2835/0.45(0.45 + 0.02197)} = 34.96 ≅ 35

Specific Volume = 35 m³/kmol

V = m x Vspecific/M = (1 x 0.45)/32 = 14.06 x 10^-3 m³

For Pressure P2, we know that v2= v1

P2 = {RT2/(v2-b)} - {a/v2(v2+b)(√T2)} = {(0.08314 x 150)/(0.45 - 0.02197)} - {17.22/(0.45)(0.45 + 0.02197)(√150)} = 22.5 bar

You might be interested in
What is the thermal efficiency of this regeneration cycle in terms of enthalpies and fractions of total flow?
irga5000 [103]

Answer:

\eta =\dfrac{(h_3-h_4)-(h_2-h_1)}{(h_3-h_5)}

Explanation:

generally regeneration of cycle is used in the case of gas turbine. due to regeneration efficiency of turbine is increased but there is no effect on the on the net work out put of turbine.Actually in regeneration net heta input is decreases that is why total efficiency  increase.

 Now from T-S diagram

    W_{net}=W_{out}-W_{in}

   W_{net}=(h_3-h_4)-(h_2-h_1)

  Q_{in}=h_3-h_5

  Due to generation (h_5-h_2) amount of energy has been saved.

  Q_{generation}=Q_{saved}

So efficiency of cycle \eta =\frac{W_{net}}{Q_{in}}

  \eta =\dfrac{(h_3-h_4)-(h_2-h_1)}{(h_3-h_5)}

Effectiveness of re-generator

  \varepsilon =\dfrac{(h_5-h_2)}{(h_4-h_2)}

So the efficiency of regenerative cycle

\eta =\dfrac{(h_3-h_4)-(h_2-h_1)}{(h_3-h_5)}

7 0
3 years ago
Three point charges, each with q = 3 nC, are located at the corners of a triangle in the x-y plane, with one corner at the origi
lawyer [7]

Answer:

\vec F_{A} = -67500\,N\cdot (i + j)

Explanation:

The position of each point are the following:

A = (0\,m,0\,m,0\,m), B = (0.02\,m,0\,m,0\,m), C = (0\,m,0.02\,m,0\,m)

Since the three objects report charges with same sign, then, net force has a repulsive nature. The net force experimented by point charge A is:

\vec F_{A} = \vec F_{AB} + \vec F_{AC}

\vec F_{A} = -\frac{k\cdot q^{2}}{r_{AB}^{2}}\cdot i - \frac{k\cdot q^{2}}{r_{AC}^{2}}\cdot j

\vec F_{A} = - \frac{k\cdot q^{2}}{r^{2}} \cdot (i + j)

\vec F_{A} = -\frac{(9 \times 10^{9}\,\frac{N\cdot m^{2}}{C^{2}} )\cdot (3\times 10^{-9}\,C)}{(0.02\,m)^{2}}\cdot (i + j)

\vec F_{A} = -67500\,N\cdot (i + j)

6 0
3 years ago
Assume the work done compressing the He gas is -63 kJ and the internal energy change of the gas is 79 kJ. What is the heat loss
klemol [59]

Answer:

Heat gain of 142 kJ

Explanation:

We can see that job done by compressing the He gas is negative, it means that the sign convention we are going to use is negative for all the work done by the gas and positive for all the job done to the gas. With that being said, the first law of thermodynamics equation will help us to solve this problem.

ΔU = Q + W ⇒ Q = ΔU -W

Q = 79 - (-63) = 142 kJ

Therefore, the gas gained heat by an amount of 142 kJ.

3 0
3 years ago
What is the best source of information about the world?
iogann1982 [59]
To be honest theres a lot...
8 0
4 years ago
Regression analysis is a statistical procedure for developing a mathematical equation that describes how _____. Group of answer
Oduvanchick [21]

Answer:

one dependent and on or more independent variables are related.

4 0
3 years ago
Other questions:
  • Calculate the maximum internal crack length allowable for a 7075-T651 aluminum alloy component that is loaded to a stress one-ha
    15·1 answer
  • Which of the following is likely to have the suffix "" after the domain name in its URL?
    7·2 answers
  • A) A cross-section of a solid circular rod is subject to a torque of T = 3.5 kNâ‹…m. If the diameter of the rod is D = 5 cm, wha
    10·1 answer
  • The temperature of an electric welding arc is about?
    13·1 answer
  • A flame ionization detector, which is often used in gas chromatography, responds to a change in
    12·1 answer
  • A pressure gage at the inlet to a gas compressor indicates that the gage pressure is 40.0 kPa. Atmospheric pressure is 1.01 bar.
    5·1 answer
  • A 24-tooth gear has AGMA standard full-depth involute teeth with diametral pitch of 12. Calculate the pitch diameter, circular p
    5·2 answers
  • Traffic at a roundabout moves
    8·1 answer
  • What is the command this line of code is telling the robot?
    13·2 answers
  • There are three homes being built, each with an identical deck on the back. Each deck is comprised of two separate areas. One ar
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!