This is a tricky question. All that matters are ratios of percentages, not percentages themselves. So no one should directly compare 27.2 with 42.9. We must and shall compare the ratios (27.2 to 72.8) and (42.9 to 57.1).
Take them both down to 1 to and see what happens.
Working out the formulas knowing atomic masses is a bit beside the point; this is how people first DISCOVERED the idea of atomic mass.
A
Carbon Oxygen
27.2g 72.8g (100-27.2)
Moles 27.2/12 72.8/16
2.27 4.55
Ratio 1 2
Do the same with the other
Answer:
I think it will carbon hope it helps
The Beer-Lambert law states that A = E*c*l where A is absorbance, E is the molar absorbance coeffecient, c is concentration and l is path length. Therefore the absorbance is directly proportional to concentration, and by increasing the concentration by a factor of 3, absorbance will increase by a factor of 3 giving A = 1.584
H• •Be• •H --> H:Be:H
Since there are 4 valence electrons in total, Beryllium has 2 and Hydrogen has 2. You would put the Be in the middle because there is only 1 of them.
Explanation:
The reaction given is;
TiCl4 + H2O --> TiO2 + HCl
The reaction is not balanced, upon balancing it is given as;
TiCl4 + 2H2O → TiO2 + 4HCl
a. How many moles of H2O are needed to react with 6.50 moles of TiCl4?
From the reaction;
1 mol of TiCl4 requires 2 mol of H2O
6.50 mol of TiCl4 would require x mol of H2O
1 = 2
6.5 = x
x = 6.5 * 2 / 1 = 13.0 mol
b. How many moles of HCl are formed when 8.44 moles of TiCl4 react?
From the equation of the reaction;
1 mol of TiCl4 reacts to form 4 mol of HCl
8.44 mol of TiCl4 reacts to form x mol of HCl
1 = 4
8.44 = x
x = 8.44 * 4 / 1 = 33.76 mol