Answer:
The molar mass of the gas is 36.25 g/mol.
Explanation:
- To solve this problem, we can use the mathematical relation:
ν = 
Where, ν is the speed of light in a gas <em>(ν = 449 m/s)</em>,
R is the universal gas constant <em>(R = 8.314 J/mol.K)</em>,
T is the temperature of the gas in Kelvin <em>(T = 20 °C + 273 = 293 K)</em>,
M is the molar mass of the gas in <em>(Kg/mol)</em>.
ν = 
(449 m/s) = √ (3(8.314 J/mol.K) (293 K) / M,
<em>by squaring the two sides:</em>
(449 m/s)² = (3 (8.314 J/mol.K) (293 K)) / M,
∴ M = (3 (8.314 J/mol.K) (293 K) / (449 m/s)² = 7308.006 / 201601 = 0.03625 Kg/mol.
<em>∴ The molar mass of the gas is 36.25 g/mol.</em>
Answer:
Amylase.
Explanation:
The process of digestion begin to start in mouth when food mix with saliva. An enzyme is released which is called Amylase help in digestion of carbohydrates.
Answer:
B, D, E, C, A
Explanation:
We have 5 blocks with their respective masses and volumes.
Block Mass Volume
A 65.14 kg 103.38 L
B 0.64 kg 100.64 L
C 4.08 kg 104.08 L
D 3.10 kg 103.10 L
E 3.53 kg 101.00 L
The density (ρ) is an intensive property resulting from dividing the mass (m) by the volume (V), that is, ρ = m / V
ρA = 65.14 kg / 103.38 L = 0.6301 kg/L
ρB = 0.64 kg / 100.64 L = 0.0064 kg/L
ρC = 4.08 kg / 104.08 L = 0.0392 kg/L
ρD = 3.10 kg / 103.10 L = 0.0301 kg/L
ρE = 3.53 kg / 101.00 L = 0.0350 kg/L
The order from least dense to most dense is B, D, E, C, A