1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Agata [3.3K]
3 years ago
8

During an ultrasound, sound waves are sent by a transducer through muscle tissue at a speed of 1300 m/s. Some of the sound waves

are reflected from a metal fragment in the muscle and are detected by the transducer 1.5 x 10−4 seconds after they were first emitted. What is the depth of the metal fragment in the muscle tissue?
Physics
1 answer:
Dominik [7]3 years ago
8 0

Answer:

Distance of metal fragment is 0.0975 m

Explanation:

As we know that the ultrasound will move towards the metal fragment and reflected back to the transducer

So the time interval in which sound will go to the metal fragment and come back is given as

t = 1.5 \times 10^{-4} s

now we know that the speed of the wave in the metal is

v = 1300 m/s

now we know that total distance traveled by the ultrasonic wave is given as

d = v t

d = 1300 (1.5 \times 10^[-4})

d = 0.195 m

so the depth of metal fragment is half of total distance because in the ultraviolet sound move to and from between transducer and metal fragment so its distance is given as

x = \frac{d}{2}

x = 0.0975 m

You might be interested in
Suppose you have two magnets. Magnet A doesn't have its poles labeled, but Magnet B does have a clearly labeled north and south
Elina [12.6K]

Before going to answer this question first we have to know the fundamental principle of magnetism.

A magnet have two poles .The important characteristic of a magnet is that like poles will repel each other while unlike poles will attract each other.

Through this concept the question can be answered  as explained below-

A-As per first option the side of  magnet A is repelled by the south pole  of magnet B. Hence the pole of a must be south .It can't be north as it will lead to attraction.

B-The side of magnet A is repelled by the  north pole of magnet B. Hence the side of A must be  north pole.It can't be a south pole.

C-The side of magnet A is attracted by the south pole  of magnet  B .Hence the side of magnet A must be north.Hence this is right

D-The side of magnet A is attracted by the north pole of magnet B. Hence the side of A must south.It can't be north as it will lead to repulsion.

Hence the option C is right.

3 0
3 years ago
Read 2 more answers
Beings on spherical asteroid have observed that a large rock is approaching their asteroid in a collision course. At 7514 km fro
luda_lava [24]

Answer:

c. 4.582\times10^{21} kg

Explanation:

r_{i} = Initial distance between asteroid and rock = 7514 km = 7514000 m

r_{f} = Final distance between asteroid and rock = 2823 km = 2823000 m

v_{i} = Initial speed of rock = 136 ms⁻¹

v_{f} = Final speed of rock = 392 ms⁻¹

m = mass of the rock

M = mass of the asteroid

Using conservation of energy

Initial Kinetic energy of rock + Initial gravitational potential energy = Final Kinetic energy of rock + Final gravitational potential energy

(0.5) m v_{i}^{2} - \frac{GMm}{r_{i}} = (0.5) m v_{f}^{2} - \frac{GMm}{r_{f}} \\(0.5) v_{i}^{2} - \frac{GM}{r_{i}} = (0.5) v_{f}^{2} - \frac{GM}{r_{f}} \\(0.5) (136)^{2} - \frac{(6.67\times10^{-11}) M}{(7514000)} = (0.5) (392)^{2} - \frac{(6.67\times10^{-11}) M}{(2823000)} \\M = 4.582\times10^{21} kg

8 0
3 years ago
When a current flows in an aluminum wire of diameter 2.91 mm 2.91 mm , the drift speed of the conduction electrons is 0.000191 m
charle [14.2K]

Answer:

Number of electrons are flowing per second is 2.42 x 10¹⁹

Explanation:

The electric current flows through a wire is given by the relation :

I=envA   ....(1)

Here I is current, e is electronic charge, v is drift velocity of electrons and A is the Area of the wire.

But electric current is also define as rate of electrons passing through junction times their charge, i.e. ,

I=Ne      ....(2)

Here N is the rate of electrons passing through junction.

From equation (1) and (2).

eN = envA

N=nvA

But area of wire, A=\pi \frac{d^{2} }{4}

Here d is diameter of wire.

So, N = nv\pi \frac{d^{2} }{4}

Substitute 2.91 x 10⁻³ m for d, 0.000191 m/s for v and 6 x 10²⁸ m⁻³ for n in the above equation.

N = 6\times10^{28}\times 0.000191\times\pi \frac{(2.91\times10^{-3} )^{2} }{4}

N = 2.42 x 10¹⁹ s⁻¹  

8 0
3 years ago
(i) 10 m (ii) 20 m (iii) 40 m (iv) 80 m
IRINA_888 [86]

Answer:

20m

420=80m

100

increases

increases then decreases

6 0
3 years ago
A man is standing on a weighing machine on a ship which is bobbing up and down with simple harmonic motion of period T=15.0s.Ass
STALIN [3.7K]

Well, first of all, one who is sufficiently educated to deal with solving
this exercise is also sufficiently well informed to know that a weighing
machine, or "scale", should not be calibrated in units of "kg" ... a unit
of mass, not force.  We know that the man's mass doesn't change,
and the spectre of a readout in kg that is oscillating is totally bogus.

If the mass of the man standing on the weighing machine is 60kg, then
on level, dry land on Earth, or on the deck of a ship in calm seas on Earth,
the weighing machine will display his weight as  588 newtons  or as 
132.3 pounds.  That's also the reading as the deck of the ship executes
simple harmonic motion, at the points where the vertical acceleration is zero.

If the deck of the ship is bobbing vertically in simple harmonic motion with
amplitude of M and period of 15 sec, then its vertical position is 

                                     y(t) = y₀ + M sin(2π t/15) .

The vertical speed of the deck is     y'(t) = M (2π/15) cos(2π t/15)

and its vertical acceleration is          y''(t) = - (2πM/15) (2π/15) sin(2π t/15)

                                                                = - (4 π² M / 15²)  sin(2π t/15)

                                                                = - 0.1755 M sin(2π t/15) .

There's the important number ... the  0.1755 M.
That's the peak acceleration.
From here, the problem is a piece-o-cake.

The net vertical force on the intrepid sailor ... the guy standing on the
bathroom scale out on the deck of the ship that's "bobbing" on the
high seas ... is (the force of gravity) + (the force causing him to 'bob'
harmonically with peak acceleration of  0.1755 x amplitude).

At the instant of peak acceleration, the weighing machine thinks that
the load upon it is a mass of  65kg, when in reality it's only  60kg.
The weight of 60kg = 588 newtons.
The weight of 65kg = 637 newtons.
The scale has to push on him with an extra (637 - 588) = 49 newtons
in order to accelerate him faster than gravity.

Now I'm going to wave my hands in the air a bit:

Apparent weight = (apparent mass) x (real acceleration of gravity)

(Apparent mass) = (65/60) = 1.08333 x real mass.

Apparent 'gravity' = 1.08333 x real acceleration of gravity.

The increase ... the 0.08333 ... is the 'extra' acceleration that's due to
the bobbing of the deck.

                        0.08333 G  =  0.1755 M

The 'M' is what we need to find.

Divide each side by  0.1755 :          M = (0.08333 / 0.1755) G

'G' = 9.0 m/s²
                                       M = (0.08333 / 0.1755) (9.8) =  4.65 meters .

That result fills me with an overwhelming sense of no-confidence.
But I'm in my office, supposedly working, so I must leave it to others
to analyze my work and point out its many flaws.
In any case, my conscience is clear ... I do feel that I've put in a good
5-points-worth of work on this problem, even if the answer is wrong .

8 0
3 years ago
Other questions:
  • Heat likes to remain <br> ONMFRIU ← Whats that unscrambled?
    7·1 answer
  • Help me... my science is horrible. I will mark brainliest, would prefer fast answer...
    6·1 answer
  • A mass of 2000 kg is raised 5 m in 10 seconds. What is the kinetic energy of the mass at that height?
    9·1 answer
  • a motorcycle is trying to leap across the canyon by driving horizontally off a cliff 38 m/s. Ignoring air resistance, find the s
    11·1 answer
  • A rocket of mass 1200kg is travelling at 2000m/s .It fires its engine for 1 min .The forwarded thrust provided by the rocket eng
    6·1 answer
  • What force is required to accelerate a 1840 kg car from 4.77 m/s to 23.5 m/s,
    9·1 answer
  • Can you guys help me with this guestion?
    10·1 answer
  • A mass of 80 g of KNO3 is dissolved in 100 g of water at 50 ºC. The solution is heated to 70ºC. How many more grams of potassium
    8·1 answer
  • Assume this piston has a maximum pressure rating of 2.5 pounds-force per square inch [psi]. The force applied to the cylindrical
    5·1 answer
  • Will give correct answer brainliest
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!