1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nirvana33 [79]
3 years ago
7

A 4.5 g coin sliding to the right at 23.8 cm/s makes an elastic head-on collision with a 13.5 g coin that is initially at rest.

After the collision, the 4.5 g coin moves to the left at 11.9 cm/s. (a) Find the final velocity of the other coin. 7.886 Incorrect: Your answer is incorrect. cm/s (b) Find the amount of kinetic energy transferred to the 13.5 g coin. 0.42 Incorrect: Your answer is incorrect. J
Physics
2 answers:
Airida [17]3 years ago
4 0

Answer:

a) v = 11.9\times 10^{-2}\,\frac{m}{s} \,(11.9\,\frac{cm}{s} ), b) \Delta K = 9.559\times 10^{-5}\,J

Explanation:

a) The final velocity of the 13.5 g coin is found by the Principle of Momentum Conservation:

(4.5\times 10^{-3}\,kg)\cdot (23.8\times 10^{-2}\,\frac{m}{s} )+(13.5\times 10^{-3}\,kg})\cdot (0\,\frac{m}{s} ) = (4.5\times 10^{-3}\,kg)\cdot (-11.9\times 10^{-2}\,\frac{m}{s} )+(13.5\times 10^{-3}\,kg})\cdot v

The final velocity is:

v = 11.9\times 10^{-2}\,\frac{m}{s} \,(11.9\,\frac{cm}{s} )

b) The change in the kinetic energy of the 13.5 g coin is:

\Delta K = \frac{1}{2}\cdot (13.5\times 10^{-3}\,kg)\cdot \left[(11.9\times 10^{-2}\,\frac{m}{s} )^{2}-(0\,\frac{m}{s} )^{2}\right]

\Delta K = 9.559\times 10^{-5}\,J

likoan [24]3 years ago
4 0

Answer:

(a) 11.9 cm/s or v' = 0.119 m/s

(b) 9.56×10⁻⁵ J

Explanation:

(a)

From the law conservation of momentum,

total momentum before collision = Total momentum after collision

For elastic collision,

mu +m'u' = mv+m'v'..................... Equation 1

Where m = mass of the first coin, u = initial velocity of the first coin, m' = mass of the second coin, u' = initial velocity of the second coin, v = final velocity of the first coin, v' = final velocity of the second coin

Note: Since the second coin was initially at rest, u' = 0 m/s, and m'u' = 0

Therefore,

mu = mv+m'v'

make v' the subject of the equation

v' = (mu-mv)/m'......................... Equation 2

Let: The right direction be positive and the left be negative.

given: m = 4.5 g, u = 23.8 cm/s, v = -11.9 cm/s (left) m' = 13.5 g

Substitute into equation 2

v' = [4.5×23.8-4.5×(-11.9)]/13.5

v' = (107.1+53.55)/13.5

v' = 160.65/13.5

v' = 11.9 cm/s or v' = 0.119 m/s

Hence the final velocity of the final velocity of the other coin = 0.119 m/s

(b)

The amount of kinetic energy transferred = 1/2m'(v'²-u'²)............... Equation 3

Given: m' = 13.5 g = 0.0135 kg, v' = 0.119 m/s, u' = 0 m/s (at rest)

Substitute into equation 3

The amount of kinetic energy transferred = 1/2(0.0135)(0.119²)

The amount of kinetic energy transferred = 0.00675(0.014161)

The amount of kinetic energy transferred = 9.56×10⁻⁵ J

You might be interested in
To calibrate the calorimeter electrically, a constant voltage of 3.6 V is applied and a current of 2.6 A flows for a period of 3
iren [92.7K]

Answer:

372.3 J/^{\circ}C

Explanation:

First of all, we need to calculate the total energy supplied to the calorimeter.

We know that:

V = 3.6 V is the voltage applied

I = 2.6 A is the current

So, the power delivered is

P=VI=(3.6)(2.6)=9.36 W

Then, this power is delivered for a time of

t = 350 s

Therefore, the energy supplied is

E=Pt=(9.36)(350)=3276 J

Finally, the change in temperature of an object is related to the energy supplied by

E=C\Delta T

where in this problem:

E = 3276 J is the energy supplied

C is the heat capacity of the object

\Delta T =29.1^{\circ}-20.3^{\circ}=8.8^{\circ}C is the change in temperature

Solving for C, we find:

C=\frac{E}{\Delta T}=\frac{3276}{8.8}=372.3 J/^{\circ}C

5 0
2 years ago
Rank these significant figures numbers from the least to the most
Mumz [18]

Answer:

0.006<357<700.003<6010<9256.0<9520.00

8 0
2 years ago
What type of energy results from the burning of wood or gasoline?
Sonja [21]

Answer:

Chemical energy

Explanation:

Chemical energy is energy stored in the bonds of atoms and molecules. Batteries, biomass, petroleum, natural gas, and coal are examples of chemical energy. Chemical energy is converted to thermal energy when people burn wood in a fireplace or burn gasoline in a car's engine.

7 0
2 years ago
When a pendulum is swinging, the velocity is highest at which point?
Tems11 [23]
At the center, when the bob is hanging straight down

3 0
3 years ago
The instantaneous speed of a particle moving along one straight line is v(t) = ate−6t, where the speed v is measured in meters p
beks73 [17]

Answer:

v_max = (1/6)e^-1 a

Explanation:

You have the following equation for the instantaneous speed of a particle:

v(t)=ate^{-6t}   (1)

To find the expression for the maximum speed in terms of the acceleration "a", you first derivative v(t) respect to time t:

\frac{dv(t)}{dt}=\frac{d}{dt}[ate^{-6t}]=a[(1)e^{-6t}+t(e^{-6t}(-6))]  (2)

where you have use the derivative of a product.

Next, you equal the expression (2) to zero in order to calculate t:

a[(1)e^{-6t}-6te^{-6t}]=0\\\\1-6t=0\\\\t=\frac{1}{6}

For t = 1/6 you obtain the maximum speed.

Then, you replace that value of t in the expression (1):

v_{max}=a(\frac{1}{6})e^{-6(\frac{1}{6})}=\frac{e^{-1}}{6}a

hence, the maximum speed is v_max = ((1/6)e^-1)a

5 0
2 years ago
Other questions:
  • A car with a mass of 1500 kg is traveling down the interstate at 25 m/s. What is the kinetic energy of the car, measured in Joul
    8·1 answer
  • Magnetic field lines surrounding a magnet are conventionally drawn
    7·2 answers
  • Need help with these please
    11·2 answers
  • What problems can you imagine arising from a nation of mixed nationalities and faiths? Provide real world examples, if you can.
    10·1 answer
  • If you weigh 690n on the earth, what would be your weight on the surface of a neutron star that has the same mass as our sun and
    14·1 answer
  • 2. What is one reason why the author includes information about religious beliefs during the time of Johannes Fabricius' discove
    15·1 answer
  • Which are examples of a medium?
    14·2 answers
  • What is the wavelength associated with 0.113kg ball traveling with velocity of 43 m/s?
    7·1 answer
  • Which is the best term to describe a chemical reaction in which the reactants have less potential energy than the products?
    15·1 answer
  • During a ______ Moon phase, the side of the Moon facing Earth isn't reflecting any sunlight from the Sun.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!