Answer:
A baseball (m= 149g) approaches a bat horizontally at a speed of 40.2 m/s (90 mi/h) and is hit straight back at a speed of 45.6m/s (102mi/h). If the ball is in contact with the bat for a time of 1.10ms, what is the average force exerted on the ball by the bat ? Neglect the weight of the ball, since it is so much less than the force of the bat. Choose the direction of the incoming ball as the positive direction.
Explanation:
Use the impulse equation (a form of Newton's 2nd Law): FΔt = Δ(mv) where Δ means "change in"
The change in momentum is mBB(vf - vi) = (.150 kg)(-46.9 m/s - 40.5 m/s)
Divide this by the time interval and you get F exerted by the bat in Newtons.
Take care.
Answer:
0.8 meters.
I just answered this ame question myself on a test I was taking.
<span>It reacts to the </span>motion<span>. If the mass hanging from the pulley was overwhelmingly heavier than the mass on the ramp, it'll obviously pull the ramp mass up and thus </span>friction<span> would be trying to oppose this and vice versa. </span>
Answer:
Wait, that can happen? I'm sorry.
Explanation:
In one quadrant there are 90 degrees.