Answer:
Explanation:
Normal length of spring = 28.3 cm
stretched length of spring = 38.2 cm
length of extension = 38.2 - 28.3 = 9.9 cm
= 9.9 x 10⁻² m
force applied to stretch = .55 x 9.8 ( mg )
= 5.39 N
Force constant = force applied / extension
= 5.39 / 9.9 x 10⁻²
= .5444 x 10² N /m
= 54.44 N/m
Answer:
The voltage is 2.114 V.
Explanation:
Given that,
Mass of both weights = 225 gm
Transducer sensitivity = 0.5 V/N
The first mass is located 20∘ north of east, the second mass is located 20∘ south of east,
We need to calculate the net equivalent force
Using formula of force


Put the value into the formula


We need to calculate the voltage
Using formula of voltage

Put the value into the formula


Hence, The voltage is 2.114 V.
Answer:
Gay-Lussac’s law, because as the pressure increases, the temperature increases
Explanation:
First of all, we can notice that the volume of the tank is fixed: this means that the volume of the air inside is also fixed.
This means that in this situation we can apply Gay-Lussac's law, which states that:
"for a gas kept at constant volume, the pressure of the gas is proportional to the absolute temperature of the gas".
Mathematically:

where p is the pressure in Pascal and T is the temperature in Kelvin.
In this case, the tank is filled with air: this means that the pressure of the gas inside the tank increases. And therefore, according to Gay-Lussac's law, the temperature will increase proportionally, and this explains why the tank gets hot.
The tension in the supporting cable when the cab originally moves downward is 18422.4 N
What is tension?
Tension is described as the pulling force by the means of a three-dimensional object.
Tension might also be described as the action-reaction pair of forces acting at each end of said elements.
Here,
m =combined mass = 1600 kg
s = Displacement of the elevator = 42 m
g = Acceleration due to gravity = 9.81 m/s²
u = Initial velocity = 12 m/s
v = Final velocity = 0
According to the equation of motion:

0 - 12^2 = 2*a*42
a = - 144 / 84
a = - 1.714 m/s^2
Now let's write the equation of the forces acting on the elevator. Taking upward as positive direction:
T-mg = ma
T = m(g-a)
T = 1600 ( 9.8-(-1.74))
T=18422.4 N
Hence,
The tension in the supporting cable when the cab, originally moving downward is 18422.4 N
Learn more about tension here:
<u>brainly.com/question/13772148</u>
#SPJ4
Explanation:
Answer. Due to stroking the piece of steel, the domains which are randomly arranged get aligned in the direction of stroking by the magnet. Due to this alignment of the domains, the piece of steel attains magnetic properties.