The answer is 1023 particles
This question is incomplete because the options are missing; here are the options:
Which of the following is LESS dense than water?
The spoon
The glass
The tablets
The bubbles
The correct answer to this question is The bubbles
Explanation:
In general, the density of materials and substances affects their buoyancy. This implies in water less dense materials will float and those with higher density will sink. In the situation presented, the only element that is less dense than water are bubbles; this is shown by the movement of the bubbles as these originate in the bottom of the glass of water but they rise to the surface, which shows they are less dense than water.
Answer:
A. Wipe down the glassware to remove any cleaning solvent.
Explanation:
· Remove stoppers and stopcocks when they are not in use. Otherwise, they may "freeze" in place. You can de-grease ground glass joints by wiping them with a lint-free towel soaked with ether or acetone. Wear gloves and avoid breathing the fumes. The deionized water rinse should form a smooth sheet when poured through clean glassware.
Two changes would make this reaction reactant-favored
C. Increasing the temperature
D. Reducing the pressure
<h3>Further explanation</h3>
Given
Reaction
2H₂ + O₂ ⇒ 2H₂0 + energy
Required
Two changes would make this reaction reactant-favored
Solution
The formation of H₂O is an exothermic reaction (releases heat)
If the system temperature is raised, then the equilibrium reaction will reduce the temperature by shifting the reaction in the direction that requires heat (endotherms). Conversely, if the temperature is lowered, then the equilibrium shifts to a reaction that releases heat (exothermic)
While on the change in pressure, then the addition of pressure, the reaction will shift towards a smaller reaction coefficient
in the above reaction: the number of coefficients on the left is 3 (2 + 1) while the right is 2
As the temperature rises, the equilibrium will shift towards the endothermic reaction, so the reaction shifts to the left towards H₂ + O₂( reactant-favored)
And reducing the pressure, then the reaction shifts to the left H₂ + O₂( reactant-favored)⇒the number of coefficients is greater