Straight
You already have to momentum of walking forward, and going back and forth are the same distance. If you go back then you would have to stop, turn and walk, but if you go forward you just have to walk.
Answer:
The kinetic energy of the particle as it moves through point B is 7.9 J.
Explanation:
The kinetic energy of the particle is:
<u>Where</u>:
K: is the kinetic energy
: is the potential energy
q: is the particle's charge = 0.8 mC
ΔV: is the electric potential = 1.5 kV
Now, the kinetic energy of the particle as it moves through point B is:


Therefore, the kinetic energy of the particle as it moves through point B is 7.9 J.
I hope it helps you!
Answer:
a . 0.35cm
b. 11.33cm
Explanation:
a. Given both currents are in the same direction, the null point lies in between them. Let x be distance of N from first wire, then distance from 2nd wire is 4-x
#For the magnetic fields to be zero,the fields of both wires should be equal and opposite.They are only opposite in between the wires:

Hence, for currents in same direction, the point is 0.35cm
b. Given both currents flow in opposite directions, the null point lies on the other side.
#For the magnetic fields to be zero,the fields of both wires should be equal and opposite.They are only opposite in outside the wires:
Let x be distance of N from first wire, then distance from 2nd wire is 4+x:

Hence, if currents are in opposite directions the point on x-axis is 11.33cm
The tension in the two chains T1 and T2 is 676.65 N and 542.53 N respectively.
<h3>Principle of moments</h3>
The Principle of Moments states that when a body is in equip, the sum of clockwise moment about a point is equal to the sum of anticlockwise moment about the same point.
The formula for calculating moment is given below:
- Moment = Force × perpendicular distance from the pivot
<h3>Calculating the tension in the chains</h3>
From the principle of moments:
Let tension in chain 1 be T1 and tension in chain 2 be T2.
T1 + T2 = 150 + 650 + 419
T1 + T2 =1219
Taking all distances from chain 1,
Sum of Moments = 0
419 × 0.5 + 150 × 0.85 + 650 × 0.9 = T2 × 1.7
T2 = 922/17
T2 = 542.35 N
Then, T1 = 1219 - 542.35
T1 = 676.65 N
Therefore, the tension in the two chains T1 and T2 is 676.65 N and 542.53 N respectively.
Learn more about tension and moments at: brainly.com/question/187404
brainly.com/question/14303536