Answer:
u = - 38.85 m/s^-1
Explanation:
given data:
acceleration = 2.10*10^4 m/s^2
time = 1.85*10^{-3} s
final velocity = 0 m/s
from equation of motion we have following relation
v = u +at
0 = u + 2.10*10^4 *1.85*10^{-3}
0 = u + (21 *1.85)
0 = u + 38.85
u = - 38.85 m/s^-1
negative sign indicate that the ball bounce in opposite directon
Answer:
He should stand from the center of laser pointed on the wall at 1.3 m.
Explanation:
Given that,
Wave length = 650 nm
Distance =10 m
Double slit separation d = 5 μm
We need to find the position of fringe
Using formula of distance



Put the value into the formula


Hence, He should stand from the center of laser pointed on the wall at 1.3 m.
Boiling points are raised by hydrogen bonds because they make different molecules desire to "attach" to one another, which requires more energy to do so. In water, for instance, the hydrogen proton is in a state that resembles ionization because the connections between oxygen and hydrogen, while covalent, are strongly polar. The oxygen also receives a partial negative charge. Therefore, hydrogen bonds are formed when the electro-positive H in one molecule is strongly electrostatically attracted to the electro-negative O in nearby molecules. Despite being weak links, they are powerful enough to significantly alter the liquid's characteristics.
Thanks!
>> ROR
Answer:
100 Joule
Explanation:
Amount of heat in agiven body is given by Q = m•C•ΔT
where m is the mass of the body
c is the specific heat capacity of body. It is the amount of heat stored in 1 unit weight of body which raises raises the temperature of body by 1 unit of temperature.
ΔT is the change in the temperature of body
___________________________________________
coming back to problem
m = 5g
C = 2J/gC
since, it is given that temperature of body increases by 10 degrees, thus
ΔT = 10 degrees
Using the formula for heat as given
Q = m•C•ΔT
Q = 5* 2 * 10 Joule= 100 Joule
Thus, 100 joule heat must be added to a 5g substance with a specific heat of 2 J/gC to raise its temperature go up by 10 degrees.
Answer:
The work done by a particle from x = 0 to x = 2 m is 20 J.
Explanation:
A force on a particle depends on position constrained to move along the x-axis, is given by,

We need to find the work done on a particle that moves from x = 0.00 m to x = 2.00 m.
We know that the work done by a particle is given by the formula as follows :


So, the work done by a particle from x = 0 to x = 2 m is 20 J. Hence, this is the required solution.