It would be funny because . I will not be good
Answer:
The speed of the plank relative to the ice is:

Explanation:
Here we can use momentum conservation. Do not forget it is relative to the ice.
(1)
Where:
- m(g) is the mass of the girl
- m(p) is the mass of the plank
- v(g) is the speed of the girl
- v(p) is the speed of the plank
Now, as we have relative velocities, we have:
(2)
v(g/b) is the speed of the girl relative to the plank
Solving the system of equations (1) and (2)



I hope it helps you!
A) 750 m
First of all, let's find the wavelength of the microwave. We have
is the frequency
is the speed of light
So the wavelength of the beam is

Now we can use the formula of the single-slit diffraction to find the radius of aperture of the beam:

where
m = 1 since we are interested only in the central fringe
D = 30 km = 30,000 m
a = 2.0 m is the aperture of the antenna (which corresponds to the width of the slit)
Substituting, we find

and so, the diameter is

B) 0.23 W/m^2
First we calculate the area of the surface of the microwave at a distance of 30 km. Since the diameter of the circle is 750 m, the radius is

So the area is

And since the power is

The average intensity is

Answer:
80%
Explanation:

800 / 1000 = 0.8
Efficiency = 0.8 *100 = 80%
Answer:
The angle of incidence when the reflected ray is perpendicular to the incident ray = 45°
Explanation:
According to Snell's Law,
n₁ sin θ₁ = n₂ sin θ₂
When the angle between the incident ray and reflected ray is 90°, the angle of incidence is θ₁ and the angle of reflection, θ₂ = 90° - θ₁ and the index of refraction in the Snell's Law for both media would be the same, n₁ = n₂ = n
n sin θ₁ = n sin (90° - θ₁)
Note that from trigonometric relations,
Sin (90° - θ₁) = cos θ₁
n sin θ₁ = n cos θ₁
(sin θ₁)/(cos θ₁) = 1
tan θ₁ = 1
θ₁ = arctan 1 = 45°
Hope this Helps!!!