Answer:
True
Explanation:
An LED test light is a piece of electronic test equipment used to determine the presence of electricity in a piece of equipment under test, making this statement true.
Answer:
t = 30.1 sec
Explanation:
If the ant is moving at a constant speed, the velocity vector will have the same magnitude at any point, and can be decomposed in two vectors, along directions perpendicular each other.
If we choose these directions coincident with the long edge of the paper, and the other perpendicular to it, the components of the velocity vector, along these axes, can be calculated as the projections of this vector along these axes.
We are only interested in the component of the velocity across the paper, that can be calculated as follows:
vₓ = v* sin θ, where v is the magnitude of the velocity, and θ the angle that forms v with the long edge.
We know that v= 1.3 cm/s, and θ = 61º, so we can find vₓ as follows:
vₓ = 1.3 cm/s * sin 61º = 1.3 cm/s * 0.875 = 1.14 cm/s
Applying the definition of average velocity, we can solve for t:
t = =
⇒ t = 30.1 sec
Answer:
work is 50 kj
Explanation:
Given data
heat (Q) = 50 kj
To find out
work input for the compression stroke per kilogram of air
Solution
we will apply here "first law of thermodynamics" i.e.
The First Law of Thermodynamics states that heat is a form of energy, subject to the principle of conservation of energy, that heat energy cannot be created or destroyed. It can be transferred from one location to another location. i.e.
ΔU = Q – W ................1
here ΔU is change in internal energy, Q is heat and W is work done
here U = 0 because air compressor the compression takes place at a constant internal energy in question
so that by equation 1
Q = W
and Q = 50
so work will be 50 kj
<h3>What is a Critical Load?</h3>
Critical load Fcr or buckling load is the value of load that causes the phenomenon of change from stable to unstable equilibrium state.
With that beign said, first it is neessary to calculate the moment of inercia about the x-axis:
Then it is necessary to calculate the moment of inercia about the y-axis:
Comparing both moments of inercia it is possible to assume that the minimun moment of inercia is the y-axis, so the minimun moment of inercia is 2662in.
And so, it is possible to calculate the critical load:
See more about critical load at: brainly.com/question/22020642
#SPJ1
Answer:
Ask your boss to set all your goals
Explanation:
Asking your boss to set your goals means that you don’t participate in any of the goal setting process and your boss is doing all of it, showing no self management skills.