it is also known as formula for circumfrence which is 2 times pi times radius. if radius was 5 then the circumfrence would be 10pi.
Explanation:
1)
A) Bb BB
B) 50%
2)
A) 50%
B) <u> </u><u> </u><u> </u><u> </u><u> </u><u>b</u><u>.</u><u> </u><u> </u><u> </u><u>b</u>
B. Bb. Bb
b. bb. bb
Answer:
I(x) = 1444×k ×
I(y) = 1444×k ×
I(o) = 3888×k ×
Explanation:
Given data
function = x^2 + y^2 ≤ 36
function = x^2 + y^2 ≤ 6^2
to find out
the moments of inertia Ix, Iy, Io
solution
first we consider the polar coordinate (a,θ)
and polar is directly proportional to a²
so p = k × a²
so that
x = a cosθ
y = a sinθ
dA = adθda
so
I(x) = ∫y²pdA
take limit 0 to 6 for a and o to
for θ
I(x) =
y²p dA
I(x) =
(a sinθ)²(k × a²) adθda
I(x) = k
da ×
(sin²θ)dθ
I(x) = k
da ×
(1-cos2θ)/2 dθ
I(x) = k
×
I(x) = k ×
× (
I(x) = k ×
×
I(x) = 1444×k ×
.....................1
and we can say I(x) = I(y) by the symmetry rule
and here I(o) will be I(x) + I(y) i.e
I(o) = 2 × 1444×k ×
I(o) = 3888×k ×
......................2
I mean if he flies 5g that means that's his average speed too
Frequency = (speed) / (wavelength)
Speed = 3 x 10⁸ m/s
Wavelength = 3 cm = 0.03 m
Frequency = (3 x 10⁸ m/s) / (0.03 m)
Frequency = (3 x 10⁸ / 0.03) (m / m-s)
Frequency = 1 x 10¹⁰ Hz (10 Gigahertz)