At the time that I'll call ' Q ', the height of the stone that was
dropped from the tower is
H = 50 - (1/2 G Q²) ,
and the height of the stone that was tossed straight up
from the ground is
H = 20Q - (1/2 G Q²) .
The stones meet when them's heights are equal,
so that's the time when
<span>50 - (1/2 G Q²) = 20Q - (1/2 G Q²) .
This is looking like it's going to be easy.
Add </span><span>(1/2 G Q²) to each side.
Then it says
50 = 20Q
Divide each side by 20: 2.5 = Q .
And there we are. The stones pass each other
2.5 seconds
after they are simultaneously launched.
</span>
Answer:
Explanation:
We shall apply conservation of momentum law in vector form to solve the problem .
Initial momentum = 0
momentum of 12 g piece
= .012 x 37 i since it moves along x axis .
= .444 i
momentum of 22 g
= .022 x 34 j
= .748 j
Let momentum of third piece = p
total momentum
= p + .444 i + .748 j
so
applying conservation law of momentum
p + .444 i + .748 j = 0
p = - .444 i - .748 j
magnitude of p
= √ ( .444² + .748² )
= .87 kg m /s
mass of third piece = 58 - ( 12 + 22 )
= 24 g = .024 kg
if v be its velocity
.024 v = .87
v = 36.25 m / s .
Answer:
B) resistance
Explanation:
the resistance of a wire is proportional to its length, and inversely proportional to its cross-sectional area.
Force = mass × acceleration
To find acceleration, we can divide the speed by the time it took:
acceleration = 2.40×10^7 / 1.8×10^-9
acceleration = 1.33×10^16
the mass is equal to the mass of an electron
force = (9.11×10^-31)(1.33×10^16)
force = 1.21×10^-14 N
A=F/m
a=(3000000)/(20000)
a=15 m/s^2