Answer:
1.Plant Grass and Shrubs. Grass and shrubs are very effective at stopping soil erosion. ...
2.Use Erosion Control Blankets to Add 3.Vegetation to Slopes. ...
4.Build Terraces. ...
5.Create Diversions to Help Drainage
Answer:
The operating system
Explanation:
The job of the operating system is to manage system resources allowing the abstraction of the hardware, providing a simple user interface for the user. The operating system is also responsible for handling application's access to system resources.
For this purpose, the operating system allows a user to run applications on their computing device.
Cheers.
Answer:
Welding, carpentry, masonry, construction worker, barber
Explanation:
Answer:
The rate of entropy change of the air is -0.10067kW/K
Explanation:
We'll assume the following
1. It is a steady-flow process;
2. The changes in the kinetic energy and the potential energy are negligible;
3. Lastly, the air is an ideal gas
Energy balance will be required to calculate heat loss;
mh1 + W = mh2 + Q where W = Q.
Also note that the rate of entropy change of the air is calculated by calculating the rate of heat transfer and temperature of the air, as follows;
Rate of Entropy Change = -Q/T
Where Q = 30Kw
T = Temperature of air = 25°C = 298K
Rate = -30/298
Rate = -0.100671140939597 KW/K
Rate = -0.10067kW/K
Hence, the rate of entropy change of the air is -0.10067kW/K
Answer:
COP = 3.828
W' = 39.18 Kw
Explanation:
From the table A-11 i attached, we can find the entropy for the state 1 at -20°C.
h1 = 238.43 KJ/Kg
s1 = 0.94575 KJ/Kg.K
From table A-12 attached we can do the same for states 3 and 4 but just enthalpy at 800 KPa.
h3 = h4 = hf = 95.47 KJ/Kg
For state 2, we can calculate the enthalpy from table A-13 attached using interpolation at 800 KPa and the condition s2 = s1. We have;
h2 = 275.75 KJ/Kg
The power would be determined from the energy balance in state 1-2 where the mass flow rate will be expressed through the energy balance in state 4-1.
W' = m'(h2 - h1)
W' = Q'_L((h2 - h1)/(h1 - h4))
Where Q'_L = 150 kW
Plugging in the relevant values, we have;
W' = 150((275.75 - 238.43)/(238.43 - 95.47))
W' = 39.18 Kw
Formula foe COP is;
COP = Q'_L/W'
COP = 150/39.18
COP = 3.828