The answer is <span>(3) 3 × 12.4 hours
</span>
To calculate this, we will use two equations:


where:
<span>n - number of half-lives
</span>x - remained amount of the sample, in decimals
<span>

- half-life length
</span>t - total time elapsed.
First, we have to calculate x and n. x is <span>remained amount of the sample, so if at the beginning were 16 grams of potassium-42, and now it remained 2 grams, then x is:
2 grams : x % = 16 grams : 100 %
x = 2 grams </span>× 100 percent ÷ 16 grams
x = 12.5% = 0.125
Thus:
<span>

</span>




It is known that the half-life of potassium-42 is 12.36 ≈ 12.4 hours.
Thus:
<span>

</span><span>

</span>

Therefore, it must elapse 3 × 12.4 hours <span>before 16 grams of potassium-42 decays, leaving 2 grams of the original isotope</span>
Explanation:
FeCl3 + <u>3</u> KSCN ➡ <u>3</u> KCl + Fe(SCN)3
Hope it helps
The reactions are in order which includes combustion reaction, Hydration reaction, oxidation reaction, and displacement reaction.
a) A combustion reaction is a chemical reaction between a fuel and an oxidant where heat is released. The combustion reaction example is given below. It is a balanced chemical reaction.
2C₃H₆(g) + 9O₂(g) --------> 6CO₂(g) + 6H₂O(g)
b. A hydration reaction is a chemical reaction in which a molecule of water is added to another molecule. Here Aluminum oxide is added to water to form aluminum hydroxide.
4Al₂O3(s) + 6H₂O(l)------> 2Al(OH)3(s)
c. When a metal reacts with oxygen, the metal forms an oxide. Oxide is a compound of metal and oxygen. Here lithium metal reacts with oxygen to form lithium oxide.
2Li(s) + O₂(g)-----> Li₂O(s)
d. A displacement reaction is one in which a more reactive element displaces a less reactive element from a compound. Here Zinc is more reactive than silver, so silver was displaced to form Zinc Nitrate.
Zn(s) + 2AgNO₃(aq) -----> 2Ag(s) + Zn(NO₃)₂(aq)
To know more about reactions, click below:
brainly.com/question/11231920
#SPJ1