1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
OLEGan [10]
3 years ago
7

A coil is wrapped with 300 turns of wire on the perimeter of a circular frame (radius = 8.0 cm). Each turn has the same area, eq

ual to that of the frame. A uniform magnetic field is turned on perpendicular to the plane of the coil. This field changes at a constant rate from 20 to 80 mT in a time of 20 ms. What is the magnitude of the induced emf in the coil at the instant the magnetic field has a magnitude of 50 mT?
Physics
1 answer:
MAVERICK [17]3 years ago
9 0

Answer:

Approximately 18 volts when the magnetic field strength increases from \rm 20\; mT to \rm 80\;mT at a constant rate.

Explanation:

By the Faraday's Law of Induction, the EMF \epsilon that a changing magnetic flux induces in a coil is:

\displaystyle \epsilon = N \cdot \frac{d\phi}{dt},

where

  • N is the number of turns in the coil, and
  • \displaystyle \frac{d\phi}{dt} is the rate of change in magnetic flux through this coil.

However, for a coil the magnetic flux \phi is equal to

\phi = B \cdot A\cdot \cos{\theta},

where

  • B is the magnetic field strength at the coil, and
  • A\cdot \cos{\theta} is the area of the coil perpendicular to the magnetic field.

For this coil, the magnetic field is perpendicular to coil, so \theta = 0 and A\cdot \cos{\theta} = A. The area of this circular coil is equal to \pi\cdot r^{2} = \pi\times 8.0\times 10^{-2}\approx \rm 0.0201062\; m^{2}.

A\cdot \cos{\theta} = A doesn't change, so the rate of change in the magnetic flux \phi through the coil depends only on the rate of change in the magnetic field strength B. The size of the magnetic field at the instant that B = \rm 50\; mT will not matter as long as the rate of change in B is constant.

\displaystyle \begin{aligned} \frac{d\phi}{dt} &= \frac{\Delta B}{\Delta t}\times A \\&= \rm \frac{80\times 10^{-3}\; T- 20\times 10^{-3}\; T}{20\times 10^{-3}\; s}\times 0.0201062\;m^{2}\\&= \rm 0.0603186\; T\cdot m^{2}\cdot s^{-1}\end{aligned}.

As a result,

\displaystyle \epsilon = N \cdot \frac{d\phi}{dt} = \rm 300 \times 0.0603186\; T\cdot m^{2}\cdot s^{-1} \approx 18\; V.

You might be interested in
5. Susan exerted 400 newtons of force while pushing on a huge boulder. The boulder moved 0 meters. Calculate work.
Stells [14]

Answer:

0 J

Explanation:

Work is the product of force and distance in the direction of force.

The formula is ; Work = Force * Distance

Given that :

Force = 400 N

Distance = 0 meters

Work = 400 * 0 = 0 J

No work was done because the boulder did not move.

4 0
3 years ago
You observe lighting striking and then hear to sound 8 seconds later. The speed of sound in air is 340 m/s. How
Leto [7]

Answer:

2.72 Kilometers

Explanation:

8 × 340 m/s = 2720 m = 2.72 Kilometers

7 0
3 years ago
PLZ HELP NOW
ZanzabumX [31]

Answer: mass x height x gravitational field strength (g)

note: gravitational field strength (g) = 10 N/Kg

55 x 15 x 10 = 8250

gpe = 8250j

Explanation:

4 0
3 years ago
A conductor carrying a current I = 16.5 A is directed along the positive x axis and perpendicular to a uniform magnetic field. A
Jet001 [13]

To solve this problem we will apply the concepts related to the Magnetic Force, this is given by the product between the current, the body length, the magnetic field and the angle between the force and the magnetic field, mathematically that is,

F = ILBsin \theta

Here,

I = Current

L = Length

B = Magnetic Field

\theta = Angle between Force and Magnetic Field

But \theta = 90\°

F = ILB

Rearranging to find the Magnetic Field,

B = \frac{F}{IL}

Here the force per unit length,

B = \frac{1}{I}\frac{F}{L}

Replacing with our values,

B = \frac{0.130N/m}{16.5}

B = 0.0078T

Therefore the magnitude of the magnetic field in the region through which the current passes is 0.0078T

6 0
3 years ago
An 85.0 kg fisherman jumps from a dock at a speed of 4.30 m/s onto their 135.0 kg boat. If the boat was at rest to begin but mov
jeka94

Answer:

Final speed of boat + man is 1.66 m/s

Explanation:

As we know that there is no friction on the system or there is no external force on this system

So here we can use momentum conservation here

mv = (m + M)v_f

so we have

m = 85 kg

M = 135 kg

v = 4.30 m/s

now we have

85 \times 4.30 = (85 + 135) v

v = 1.66 m/s

4 0
3 years ago
Other questions:
  • A newly discovered planet has a mean radius of 7380 km. A vehicle on the planet\'s surface is moving in the same direction as th
    8·1 answer
  • What is the formula to find how far a wheel travels in one rotation?
    14·1 answer
  • The invention and use of the microscope showed scientists that germs could cause illness. Although there had been various unders
    5·1 answer
  • Drag each label to the correct location on the chart.
    6·2 answers
  • 3. Categorize each statement as true or false. True False as the fringe order increase for a diffraction grating the fringe brig
    8·1 answer
  • Why is cancer so horrible
    12·2 answers
  • A child sits on a fiberglass muskrat fastened 7.2 meters from the center of a merry-go-round platform that is rotating once ever
    6·1 answer
  • Rank from most to least, the amount of lift on the following airplane wings: A. Area 1500 m2 with atmospheric pressure differenc
    14·1 answer
  • When riding on a bus, you can tell you are moving by
    11·2 answers
  • Q5:
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!