1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
larisa86 [58]
3 years ago
5

4. A car accelerates uniformly from rest at 3.2 m/s^.

Physics
1 answer:
Oksi-84 [34.3K]3 years ago
7 0

Answer:

A

Explanation:

You might be interested in
A negative charge of -2.0 C and a positive charge of 3.0 C are separated by 80 m. What is the electrostatic force between the tw
faltersainse [42]

Answer:

1. 8437500 N

2. The force between the two charges is attractive.

Explanation:

1. Determination of the force between the two charges.

Charge 1 (q₁) = –2.0 C

Charge 2 (q₂) = 3.0 C

Distance apart (r) = 80 m

Electrical constant (K) = 9×10⁹ Nm²/C²

Force (F) =?

F = Kq₁q₂ / r²

F = 9×10⁹ × 2 × 3 / 80²

F = 5.4×10¹⁰ / 6400

F = 8437500 N

Thus, the force of attraction between the two charges is 8437500 N

2. From the question given, the charges are:

Charge 1 (q₁) = –2.0 C

Charge 2 (q₂) = 3.0 C

We understood that like charges repels while unlike charges attract. Since the two charges (i.e –2 C and 3 C) has opposite signs, it means they will attract each other.

Thus the force between them is attractive.

6 0
3 years ago
An example of a high energy electromagnetic wave is
Wewaii [24]
<span>An example of a high energy electromagnetic wave is "X-Ray"

When car runs, it's chemical energy (gasoline) converts into mechanical energy

Temperature is the measure of hotness or coldness of the body, so when heat expose to a substance, it's degree of hotness increases & it's temperature increases

Hope this helps!
</span>
4 0
3 years ago
A sound is recorded at 19 decibels. What is the intensity of the sound?
sp2606 [1]

1 \times 10^{-10.1} \mathrm{Wm}^{-2} is the intensity of the sound.

Answer: Option B

<u>Explanation:</u>

The range of sound intensity that people can recognize is so large (including 13 magnitude levels). The intensity of the weakest audible noise is called the hearing threshold. (intensity about 1 \times 10^{-12} \mathrm{Wm}^{-2}). Because it is difficult to imagine numbers in such a large range, it is advisable to use a scale from 0 to 100.

This is the goal of the decibel scale (dB).  Because logarithm has the property of recording a large number and returning a small number, the dB scale is based on a logarithmic scale. The scale is defined so that the hearing threshold has intensity level of sound as 0.

                     \text { Intensity }(d B)=(10 d B) \times \log _{10}\left(\frac{I}{I_{0}}\right)

Where,

I = Intensity of the sound produced

I_{0} = Standard Intensity of sound of 60 decibels = 1 \times 10^{-12} \mathrm{Wm}^{-2}

So for 19 decibels, determine I as follows,

                   19 d B=(10 d B) \times \log _{10}\left(\frac{I}{1 \times 10^{-12} W m^{-2}}\right)

                  \log _{10}\left(\frac{1}{1 \times 10^{-12} \mathrm{Wm}^{-2}}\right)=\frac{19}{10}

                  \log _{10}\left(\frac{1}{1 \times 10^{-12} \mathrm{Wm}^{-2}}\right)=1.9

When log goes to other side, express in 10 to the power of that side value,

                  \left(\frac{I}{1 \times 10^{-12} W m^{-2}}\right)=10^{1.9}

                  I=1 \times 10^{-12} \mathrm{Wm}^{-2} \times 10^{1.9}=1 \times 10^{-12-1.9}=1 \times 10^{-10.1} \mathrm{Wm}^{-2}

5 0
3 years ago
A sample of helium (He) occupies 8.0 liters at 1 atm and 20.0◦C. What pressure is necessary to change the volume to 1.0 liters a
nevsk [136]

Apply the combined gas law

PV/T = const.

P = pressure, V = volume, T = temperature, PV/T must stay constant.

Initial PVT values:

P = 1atm, V = 8.0L, T = 20.0°C = 293.15K

Final PVT values:

P = ?, V = 1.0L, T = 10.0°C = 283.15K

Set the PV/T expression for the initial and final PVT values equal to each other and solve for the final P:

1(8.0)/293.15 = P(1.0)/283.15

P = 7.7atm

7 0
3 years ago
A real gas will behave most like an ideal gas under conditions of ________.
KengaRu [80]

Answer: high temperature and low pressure

Explanation:

The Ideal Gas equation is:  

P.V=n.R.T  

Where:  

P is the pressure of the gas  

V is the volume of the gas

n the number of moles of gas  

R=0.0821\frac{L.atm}{mol.K} is the gas constant  

T is the absolute temperature of the gas in Kelvin

According to this law, molecules in gaseous state do not exert any force among them (attraction or repulsion) and the volume of these molecules is small, therefore negligible in comparison with the volume of the container that contains them.  

Now, real gases can behave approximately to an ideal gas, under the conditions described above and taking into account the following:  

When <u>temperature is high</u> a real gas approximates to ideal gas, because the molecules move quickly, preventing the repulsion or attraction forces to take effect.  In addition, at <u>low pressures</u>, the volume of molecules is negligible.

4 0
3 years ago
Other questions:
  • Which of the following must be true about the object labeled X in the circuit below?
    15·1 answer
  • The power dissipated in a resistor can be written as __________.
    5·1 answer
  • William made one comment to an employee recently assigned to his team complimenting her on her dress. Later she was reprimanded
    6·2 answers
  • A particle initially located at the origin has an acceleration of a 2.00j m/s2 and an initial velocity of v-6.00i m/s. (a) Find
    5·1 answer
  • Why do sufers like water waves with high amplitudes?
    6·1 answer
  • You throw a 3.00 N rock vertically into the air from ground level. You observe that when it is 15.0 m above the ground, it is tr
    7·1 answer
  • Which energy depends the arbitrarily assigned zero level
    10·1 answer
  • What is a type of science that studies earth and space
    9·1 answer
  • Which two conditions would result in the strongest electric force between charged objects
    15·2 answers
  • A ball falls off the roof and accelerates downwards at a rate of -9.8 m/s^2. If it falls for 2.7 seconds, what displacement will
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!