Answer:
It has to have a problem base and a realistic explanation.
Explanation:
It needs to have enough information for you to be able to come up with an answer and realistic explanation.
Hope I helped :)
Answer:
0.758 V.
Explanation:
Hello!
In this case, case when we include the effect of concentration on an electrochemical cell, we need to consider the Nerst equation at 25 °C:

Whereas n stands for the number of moles of transferred electrons and Q the reaction quotient relating the concentration of the oxidized species over the concentration of the reduced species. In such a way, we can write the undergoing half-reactions in the cell, considering the iron's one is reversed because it has the most positive standard potential so it tends to reduction:

It means that the concentration of the oxidized species is 0.002 M (that of nickel), that of the reduced species is 0.40 M and there are two moles of transferred electrons; therefore, the generated potential turns out:

Beat regards!
Its a formula relating to specific heat capacity
Δθ refers to the change in temperature
Q refers to the energy neededto raise the temperature of an object by the change in temperature
m stands for the mass of tje object
c is the specific heat capacity which is the amount of energy needed to heat up an object per unit mass