Ok so I’m pretty sure the answer would be 2 because the mass of the rock would have the same mass on Earth as it has on the moon. Also the Density of a solid object remains constant meaning it doesn’t change. But the weight would change because the Earths gravitational pull is more than that of the moon. I hope this helped!
        
             
        
        
        
Answer:
A
Explanation:
ignore this on...............................
 
        
             
        
        
        
Explanation:
Let 
 and 
The sum of the two vectors is


The difference between the two vectors can be written as


 
        
             
        
        
        
Answer:
0.04455 Hz
Explanation:
Parameters given:
Wavelength, λ = 6.5km = 6500m
Distance travelled by the wave, x = 8830km = 8830000m
Time taken, t = 8.47hours = 8.47 * 3600 = 30492 secs
First, we find the speed of the wave:
Speed, v = distance/time = x/t
v = 8830000/30492 = 289.58 m/s
Frequency, f, is given as velocity divided by wavelength:
f = v/λ
f = 289.58/6500
f = 0.04455 Hz
 
        
             
        
        
        
The possible magnitude for the force of static friction on the stationary cart is 72.1 N.
The given parameters:
- <em>Applied force on the cart, F = 72.1 N</em>
 
<em />
Based on Newton's second law of motion, the force applied to object is directly proportional to the product of mass and acceleration of the object.
F = ma
Static frictional force is the force resisting the motion of an object at rest.

where;
 is the frictional force

Thus, the possible magnitude for the force of static friction on the stationary cart is 72.1 N.
Learn more about Newton's second law of motion: brainly.com/question/25307325