Answer:
See the answer below
Explanation:
The total distance Jimmy traveled would be the sum of the distance covered from his house to the store and then from the store to his friend's house. The total distance covered can be determined if the average speed of Jimmy and the time he took to cover the distance are known.
<em> Average speed = total distance traveled/total time taken</em>
Hence,
total distance traveled = average speed x total time.
Answer: Option (a) is the correct answer.
Explanation:
The stream that flows during or after the rainfall is called an ephemeral stream. This stream occurs in areas where there is less rainfall or deficiency of moisture.
The stream that flows only in flat lands is called as river.
Mechanical weathering results in the breaking of rocks causes ice wedging.
Chemical weathering results in the change in molecular structure of rocks and soil.
Thus, it can be concluded that option (a) is the correct answer.
First, we need the balanced equation: H₂ + Cl₂ ---> 2HCl
since not much information is given, I am assuming we are at STP and that 22.4 Liters= 1 mol
1) let's convert the volume to moles using the molar volume of a gas. also we need to convert the cm₃ to mL, then to Liters.
8 cm³ (1 ml/ 1 cm³)(1 L/ 1000 mL) (1 mol/ 22.4 Liters)= 3.6x10⁻⁴ moles of H₂
2) let's use the mole ratio of the balanced equation to convert moles of H₂ to moles of HCl
3.6x10⁻⁴ mol H₂ (2 mol HCl/ 1 mol H₂)= 7.1x10⁻⁴ mol HCl
3) lastly, we convert the moles of HCl to grams using the molar mass.
molar mass of HCl= 1.01 + 35.5= 36.51 g/mol
7.1x10⁻⁴ mol HCl (36.51 g/mol)=<span> 0.026 grams HCl</span>
Answer: 0.0220275 M
Explanation:
So, we are given the following data or parameters which are going to help in solving this particular Question/problem.
=> Averagely, we have the volume = 5.0 L of blood in human body .
=> Mass of sugar eaten = 37.7 g of sugar (sucrose, 342.30 g/mol).
Therefore, the molarity of the blood sugar change can be calculated as below:
The molarity of the blood sugar change = (1/ volume) × mass/molar mass.
Thus, the molarity of the blood sugar change = (1/5) × 37.7/342.30 = 0.0220275 M.